

Informational Webinar: Nuclear Science User Facilities (NSUF) Access CINR FY 2025 FOA DE-FOA-0003309 May 9, 2024

https://nsuf.inl.gov/Page/cinr

Christopher Barr, Program Manager Brenden Heidrich, NSUF Director

Nuclear Science User Facilities (NSUF)

DOE Office of Nuclear Energy's sole user facility

Focus: Irradiation effects in nuclear fuels and materials

- Awards provide access to capabilities and expertise at no cost to the user
- Access awards support experiment design, fabrication, transport, irradiation, PIE, final disposition of materials

Open and Competitive User Access

- CINR NSUF User Access with and without R&D support
 - User Access Cost: <\$4M, up to 7 years*
 - Neutron irradiation and post irradiation examination (PIE)
 - PIE only, including synchrotron or neutron beamline access
 - Neutron irradiation only
 - Ion or gamma irradiation and PIE
 - Ion or gamma irradiation only
- Rapid Turnaround Experiments (RTE) are <u>not</u> part of the CINR FOA

Advanced Test Reactor at INL -NSUF Partner Facility

Neutron Reactors		12 reactor facilities at national laboratories and universities including the Advanced Test Reactor at INL	
Gamma & Ion Irradiation		7 gamma irradiation facilities and 7 ion beam facilities at national laboratories and universities	Cu infr cap
© Post-Irradiation Examination		Multiple hot cell and broad post-irradiation examination facilities including advanced characterization methods	Op <u>aca</u> pro
o Beamlines		Synchrotron and neutron beamlines for nuclear fuel and materials studies	Ed and Im
Computational Resources	Contraction and the second sec	Scientific high-performance computing capabilities for advanced modeling and simulation at INL	driv tec

Cutting-Edge Resources: Access to infrastructure and associated capabilities across 21 partner sites

Open access: Available to <u>industry</u>, <u>academia</u>, <u>and national labs</u> for nonproprietary R&D

Education and training: Workshops and hands-on skill development

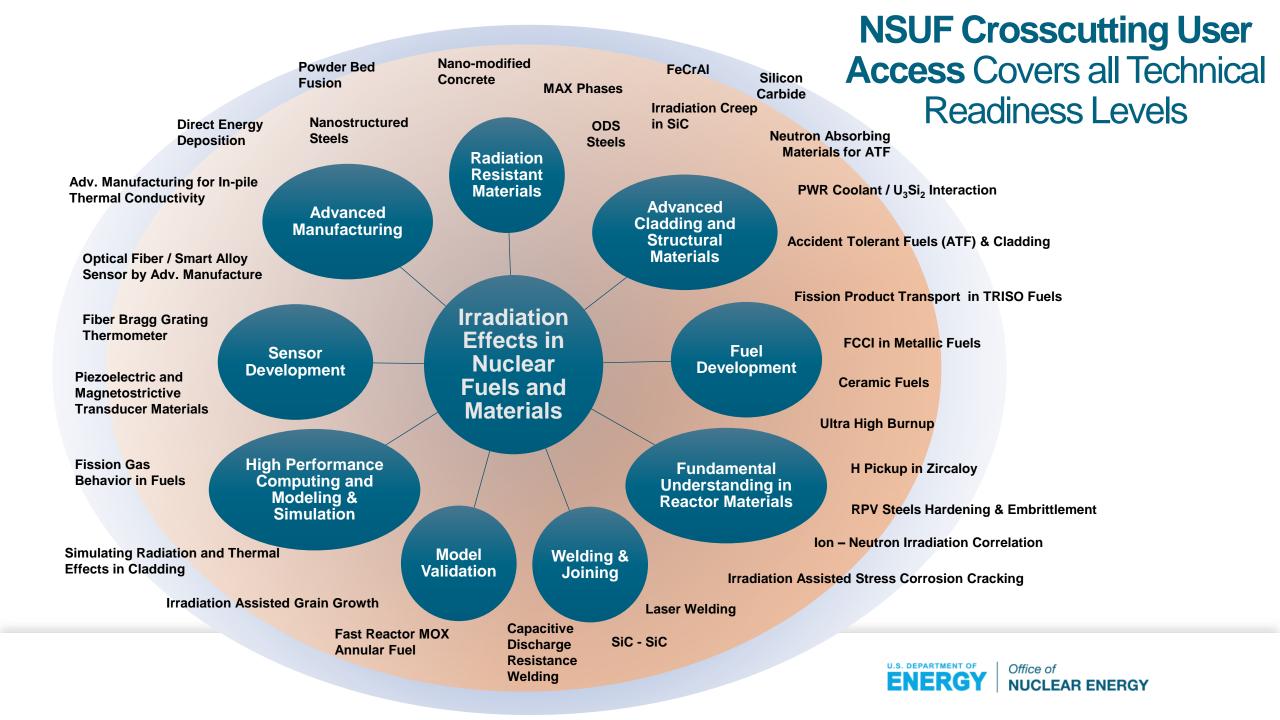
Impact: Increase understanding to drive innovation across nuclear energy technologies

Distributed User Facility Model

Partner sites enable unparalleled facility access and technical expertise to enable innovation and emergent nuclear materials R&D

User Resources for Capabilities and Partner Facilities

	NSUF Partner Institutions						
	ASUF Partne						➔ View Partne
ABOUT US	investigating this c	els and materials in a nuclear reactor environment is ex complex behavior and include the Advanced Test Reactor	remely complex and provides a rich lield for scientil r and post-irradiation examination capabilities at Ida	the National Laboratory in addition	to 668 capabilities available	e from 57 partner facilities	
ANNOUNCEMENTS		Institution	Contact	Туре	State	Country	Website
USERS ORGANIZATION	Argonne	Argonne National Laboratory	Wei-Ying Chen Technical Lead (630) 252-5222	Dept of Energy	Illinois	United States	C [®] Webs
SOLICITATIONS	Harles National Laboratory	Idaho National Laboratory	Brenden Heidrich NSUF Contact (208) 526-8117	Dept of Energy	Idaho	United States	C Websit
RESOURCES	Lawrence Libermore Retional Libermore	Lawrence Livermore National Laboratory	Scott Turney Technical Lead (925) 423-9012	Dept of Energy	California	United States	C ^{ar} Websit
MY RESEARCH	LIS Alamos	Los Alamos National Laboratory	Alex Long Technical Lead (505) 551 4377	Dept of Energy	New Mexico	United States	C ^{or} Websi
CHRISTOPHER BARR	Witt Number Number Number	Massachusetts Institute of Technology	Gordon Kohse Technical Lead (617) 253-4298	University	Massachusetts	United States	C ^{ar} Websit
Radiant Q		North Carolina State University	Ayman Hawari Technical Lead (919) 515-4598	University	North Carolina	United States	C Websi
	(In the first Constant)	The Ohio State University	Raymond Cao Technical Lead (614) 247-9701	University	Ohio	United States	C [®] Websit
	Pacific: Northwest International Automotion	Pacific Northwest National Laboratory	Stuart Maloy Technical Lead (509) 371-6775	Dept of Energy	Washington	United States	C [®] Websit


NSUF Program Office and Technical Leads are available to help users identify facilities and capabilities

CINR Awarded Projects FY 2015 – FY 2024

Nuclear Fuel and Materials Library (NFML)

- Library includes >9000 specimens from NSUF projects, legacy research projects, commercial reactors, and research reactors
- Most specimens are neutron irradiated
- Searchable database through <u>https://nsuf.inl.gov/</u> by material or fuel composition, specimen configuration, irradiation conditions, and publications
- Legacy samples from EBR-II and FFTF, commercial decommissioned power reactors, donations from other sources
- Recent additions include:
 - 304 stainless steel core shroud from commercial LWR
 - Zion Nuclear Power Plant Reactor Pressure Vessel steels
 - ATR-irradiated fuel plates from Korea Atomic Energy Research Institute

Forthcoming additions include:

- ATR-irradiated multi-principal component alloys from Tensile Testing Using the Standard Capsule (TTUSC) irradiation
- TREAT-irradiated U-Zr from the Characterization-scale Instrumented Neutron Dose Irradiation (CINDI) irradiation campaign
- Yttrium-Hydride samples from the Microreactor Program

NSUF Topic Areas

Nuclear Science User Facilities Joint R&D and Access (NSUF-1)

- Joint R&D and Access
- Eligible to lead: Universities ONLY
- R&D Support: Up to 7 years, and up to \$1,000,000
- NSUF Access funding: Up to \$4,000,000
- Federal POC: Christopher Barr

R&D and Readiness for NSUF-1:

- R&D support is only permitted for tasks associated with the execution of the requested NSUF capabilities. This would include compilation and interpretation of irradiation and post-irradiation examination results, complementary modeling and simulation studies, and related activities.
- R&D support is not for the development of new materials, fuels, or sensors.
- NSUF Readiness: Refer to Part IX Appendix D Accessing Nuclear Science User Facilities. Ensure all
 actions as they pertain to your proposal are provided. NSUF-1 access proposals need to demonstrate
 that the material is readily available and sufficient prior R&D has been completed.

Nuclear Science User Facilities Joint R&D and Access (NSUF-1) Topic Area

Objective

- Provide access to highly specialized nuclear research facilities and technical expertise to advance nuclear energy technologies that crosscut the DOE Office of Nuclear Energy mission.
- Provide R&D support for work directly associated with the proposed irradiation and/or post irradiation examination user access project

Types of Projects

- Neutron Irradiation and Post Irradiation Examination (PIE)
- Synchrotron or Neutron Beamline or PIE only
- Ion or Gamma Irradiation only
- Ion or Gamma Irradiation and PIE
- INL High Performance Computing access can be added (free to user) to any of the NSUF topic areas

Restrictions

- Access to NSUF capabilities will require agreement and final signature to the User Agreement
- Project meets NSUF readiness requirements

NSUF Joint R&D and Access (NSUF-1)

Crosscut topic that spans wide range of nuclear energy technologies

Areas of interest may include **but are not limited to**:

Fuel and Core Materials: irradiation performance and combined effects of irradiation and environment on fuels and materials; fundamental and applied aspects to fuel performance. Fuel types include, but are not limited to, oxide, metallic, particle, and/or new innovative fuel types. Core materials include, but are not limited to, accident tolerant fuel cladding systems, zirconium alloys, innovative cladding materials, and neutron-absorbing materials

Advanced Materials and Manufacturing Methods: advanced nuclear materials, novel or cost-effective manufacturing methods, and related topics that leverage NSUF irradiation and post-irradiation examination capabilities.

Sensor Materials, Instrumentation, and Active Component Systems: irradiation testing and postirradiation examination that support the development of advanced sensor materials, and the development of advanced instrumentation or measurement systems

NSUF Topic Areas

Nuclear Science User Facilities Access Only (NSUF-2)

- Joint R&D and Access
- Eligible to lead: Universities, National Laboratories, and Industry
- R&D Support: None
- NSUF Access funding: Up to \$4,000,000
- Federal POC: Christopher Barr

NSUF Readiness:

NSUF Readiness: Refer to Part IX Appendix D Accessing Nuclear Science User Facilities. Ensure all
actions as they pertain to your proposal are provided. NSUF-1 access proposals need to demonstrate
that the material is readily available and sufficient prior R&D has been completed.

Nuclear Science User Facilities Access Only (NSUF-2) Topic Area

Objective

- Provide access to highly specialized nuclear research facilities and technical expertise to advance nuclear energy technologies that crosscut the DOE Office of Nuclear Energy mission.
- Provide R&D support for work directly associated with the proposed irradiation and/or post irradiation examination user access project

Types of Projects

- Neutron Irradiation and Post Irradiation Examination (PIE)
- Synchrotron or Neutron Beamline or PIE only
- Ion or Gamma Irradiation only
- Ion or Gamma Irradiation and PIE
- INL High Performance Computing access can be added (free to user) to any of the NSUF topic areas

Restrictions

- Access to NSUF capabilities will require agreement and final signature to the User Agreement
- Project meets NSUF readiness requirements

NSUF Access Only (NSUF-2)

Crosscut topic that spans wide range of nuclear energy technologies

Areas of interest may include **but are not limited to**:

Fuel and Core Materials: irradiation performance and combined effects of irradiation and environment on fuels and materials; fundamental and applied aspects to fuel performance. Fuel types include, but are not limited to, oxide, metallic, particle, and/or new innovative fuel types. Core materials include, but are not limited to, accident tolerant fuel cladding systems, zirconium alloys, innovative cladding materials, and neutron-absorbing materials

Advanced Materials and Manufacturing Methods: advanced nuclear materials, novel or cost-effective manufacturing methods, and related topics that leverage NSUF irradiation and post-irradiation examination capabilities.

Sensor Materials, Instrumentation, and Active Component Systems: irradiation testing and postirradiation examination that support the development of advanced sensor materials, and the development of advanced instrumentation or measurement systems

Cautions and Requirements

NSUF User Agreement

- Upon award of an NSUF supported project, the NSUF User Agreement must be signed before activities will begin on the project.
- Failure to sign the non-negotiable User Agreement within 30 days of receipt of the User Agreement may result in cancellation of an awarded project.

NSUF Readiness Review

- NSUF Access (both NSUF-1 and NSUF-2) undergo a readiness review to evaluate if the proposed work is ready for NSUF access funded irradiation and/or post-irradiation examination. Part IX Appendix D provides NSUF Readiness Review Considerations.
- NSUF readiness should be addressed in both the pre-application and full application.

NSUF Feasibility

 NSUF Access (both NSUF-1 and NSUF-2) undergo a feasibility review which evaluates experimental complexity, facility schedule, project schedule, cost, need of shipping or specialized containment.

Duplication of NSUF program activities

 Proposals that completely duplicate previous or on-going NSUF or other DOE-NE supported studies will not be considered. A complete list of NSUF awards can be found under the R&D section on the website <u>NEUP.inl.gov.</u> In addition, please review recent competitive awards, R&D program websites, and documents.

Application Timeline and Information

Please contact NSUF at <u>NSUF@inl.gov</u> and visit NSUF website at <u>http://nsuf.inl.gov</u> NSUF partner sites and technical leads: <u>https://nsuf.inl.gov/Home/PartnerInstitutions</u> **Key Dates:**

Letter of Intent (Mandatory)	June 5, 2024 at 5:00 p.m. ET		
R&D/NSUF Pre-application (Mandatory)	June 26, 2024 at 5:00 p.m. ET		
NSUF Pre-application SOW (Mandatory)	August 1, 2024 at 5:00 p.m. ET		
NSUF Full Application SOW (Mandatory)	October 30, 2024 at 5:00 p.m. ET		
Full R&D/NSUF Application (Invited)	November 13, 2024 at 5:00 p.m. ET		

Note: Presentation summarizes key aspects to the NSUF access component of the of the FOA. Nothing in this webinar presentation intended to add to, take away from, or contradict any of the requirements of the FOA

Questions and Points of Contact

Federal Program Manager:

Christopher Barr, <u>christopher.barr@nuclear.energy.gov</u>

Technical Point of Contacts:

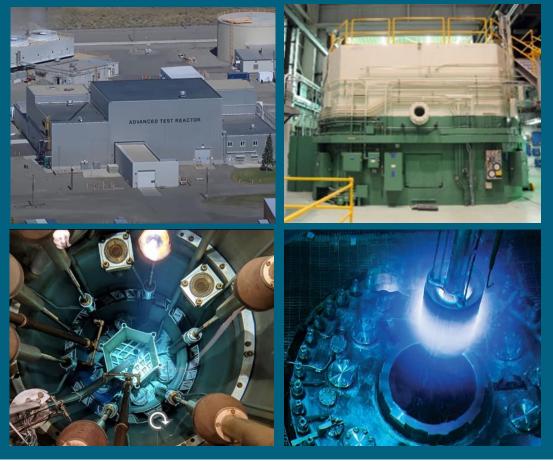
Brenden Heidrich (NSUF Director), <u>brenden.heidrich@inl.gov</u>

Irradiation Chief Scientist – Keith Jewell, james.jewell@inl.gov

Post-irradiation Chief Scientist – Rongjie Song, rongjie.song@inl.gov

NFML Lead - Kelly Cunningham, <u>kelly.cunningham@inl.gov</u>

All NSUF partner facility PoC are listed at: https://nsuf.inl.gov/Home/PartnerInstitutions



Extra Slides NSUF – Key Capabilities by Type

Christopher Barr

Neutron Irradiation Facilities

- Highly configurable neutron irradiation testbed capabilities for fuels, materials, and sensors
- Large or small volumes (mm disks to ASTM size Tensile/CT)
- Water loops, corrosion loops, sub-sized specimens, power maneuvers
- ATR, HFIR, TREAT, MITR for CINR
- University reactors accessible for RTEs

Recent Award Examples:

•Fuel: UN multi-design irradiation campaign: a critical assessment of accelerated burnup and main correlations for mechanistic fuel performance modeling; PI: E. Sooby (UTSA) – Access Value \$2.5M, FY 2023 CINR

•Structural Material: Integrated Effects of Irradiation and FLiBe Salt on Fuel Pebble and Structural Graphite for Molten Salt Reactors; PI: G. Meric (Kairos Power) – Access Value \$833K, FY 2022 CINR

Ion Irradiation Facilities

- Low-energy helium through 10s MeV proton/ions beams
- In-situ ion irradiation in TEM (IVEM-Tandem)
- In-situ mechanical testing + ion irradiation
- All capabilities accessible via RTE and CINR

Recent Award Examples:

•Structural Material: The effects of high-temperature creep on irradiation damages of 316H stainless steel made by laser additive manufacturing, J. Snitzer (Purdue – Graduate Student), FY 2023 RTE

•Sensor: Investigation of evolution of defects in β -Ga2O3 under irradiation and high temperature, **G. Yang** (NC State, FY 2023 RTE

•Fuel: Elucidating the Effect of Radiation-Induced Defect Accumulation on Swelling in UN using in-situ TEM Irradiation, **C. Taylor** (LANL), FY 2023 RTE

Hot Cells / Shield Facilities

- Radiological material handling, sectioning, characterization, and testing
- In-cell mechanical load frames
- In-cell furnace testing and electron microscopy
- Severe accident testing station

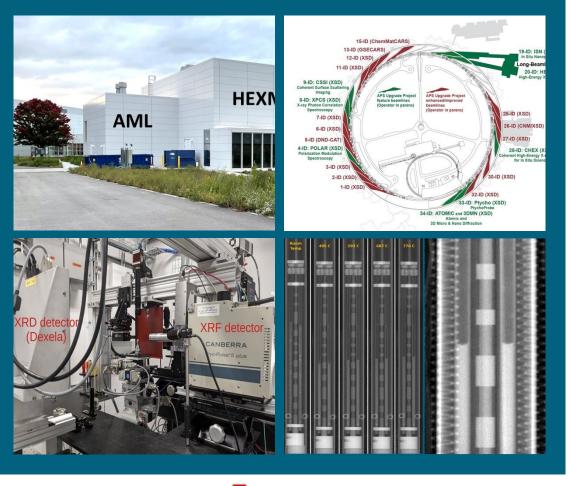
Recent Award Examples:

•**Structural Material:** Investigation of intergranular cracking of highly irradiated austenitic stainless steels – materials of pressurized water reactors – in ambient conditions, M. Gussev (ORNL), FY 2023 CINR

•Fuel/Cladding: Mechanical response and chemical effects at the fuel-cladding interface of HT-9 and metallic fuel, M. Okuniewski (Purdue) FY 2022 CINR

Low-Length Scale Characterization Labs

- Low-level irradiation to radiological materials
- SEM, P-FIBs, Ga-FIBs for sample preparation and in-situ testing
- XRD, thermal physical property testing such has thermal conductivity microscope
- Low-length scale characterization, spectroscopy, and tomography via S/TEM-**EDS/EELs and APT**

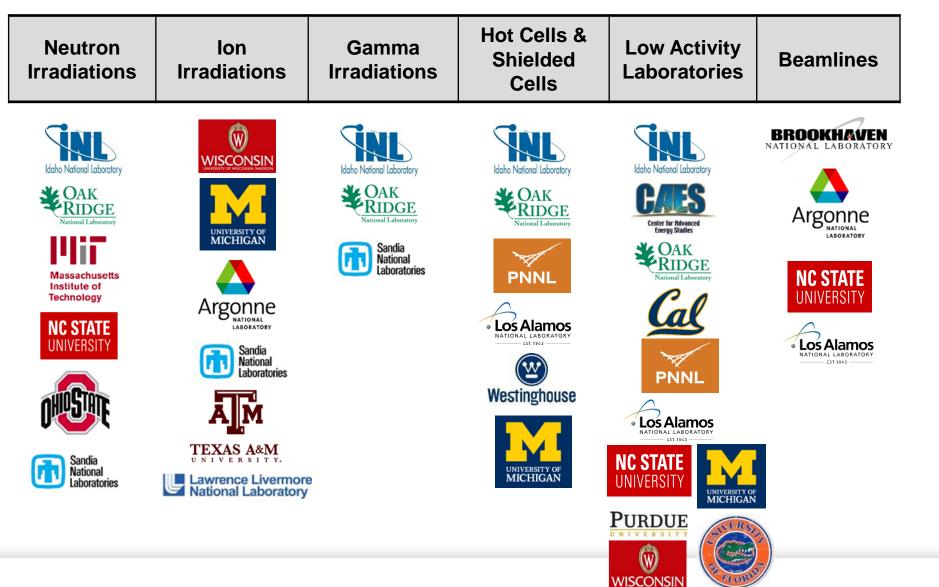

Recent Award Examples:

•Structural Material: Critical database development of high dose microstructure evolution in irradiated advanced steels, **A. Motta** (PSU), FY 2023

•Fuel/Cladding: Mechanical response and chemical effects at the fuel-cladding interface of HT-9 and metallic fuel, M. Okuniewski (Purdue) FY 2022 CINR

Beamlines

- Radiological material handling and characterization using synchrotron and neutronbeam lines
- In-situ techniques available including tensile and high-temperature
- Spectroscopy, diffraction, microscopy methods;
 3D reconstructions


Recent Award Examples:

•Cladding Material: In situ Synchrotron radiation diffraction study of the Effect of Radiation Damage on the Precipitation and Dissolution of Hydrides in Zircaloy, J. Balog (PSU-Graduate Student), FY 2023 RTE

•Fuel/Cladding: Isotope density mapping using Energy Resolved Neutron Resonance Imaging of a High Burnup UO2 Fuel Fragment, **W. Cureton** (ORNL), FY 2023 RTE

NSUF Capabilities – CINR Access Opportunities

Visit <u>nsuf.inl.gov</u> for details of individual facilities and leads

