Nuclear Energy University Programs

NEAMS Reactor IPSC:
Nuclear Reactor Performance and Safety Analysis

Dr. Thomas Fanning
Argonne National Laboratory

August 10, 2011
Overview

• Relationship between NEET and NEAMS
• Overview of NEAMS
• Reactor Integrated Performance and Safety Codes
 ▪ Nuclear Reactor Performance and Safety Analysis
• FY12 Reactor IPSC Scope
• FY12 NEUP Scope to Address Research Needs
• Expectations and Deliverables
Funding and Programmatic Overview

• Nuclear Energy Enabling Technologies (NEET)
 ▪ Crosscutting Technologies
 • Modeling and Simulation

• Nuclear Energy Advanced Modeling and Simulation (NEAMS)
 ▪ Integrated Performance and Safety Codes (IPSC)
 • Reactor IPSC
 ▪ Supporting Elements

• In FY 2012 NEAMS will be supported by NEET
Purpose of NEAMS

Produce and deliver computational tools to designers and analysts that *predict behavior* in relevant operating regimes, particularly beyond the test base.
NEAMS Program Elements

• Integrated Performance and Safety Codes
 ▪ Continuum level codes that will **predict** the **performance** and **safety** of nuclear energy systems technologies
 ▪ Attributes include 3D, science based physics, high resolution, integrated systems
 ▪ Long-term development horizon (~10 years)
 ▪ Codes with verification, validation and error uncertainty quantification
 ▪ Using interoperability frameworks and modern software development techniques and tools

• Crosscutting Methods and Tools
 ▪ Develop crosscutting (i.e. more than one IPSC) required capabilities
 ▪ Provide a single NEAMS point of contact for crosscutting requirements (e.g. experimental data, computer technologies)
 ▪ Smaller, more diverse teams to include laboratories, universities and industries.
 ▪ “Tool Development” with shorter timelines
Reactors IPSC Goals and Strategy

- Apply modern, high-performance computing techniques to nuclear reactor modeling
 - Use advanced simulation tools to improve safety, reduce cost, explore advanced designs
 - Provide local data needed to enable predictive fuel performance simulations
 - Understand and reduce uncertainty of computational models
- Strategy
 - Focus funding on reactor agnostic components to remain responsive to customer needs
 - Adopt multi-scale strategy to enable application to problems relevant to industry using a wide range of platforms
 - Utilize modular architecture to enable component-wise use by most advanced users or integrated user interface driven application by less advanced users.
 - Develop collaborations with customers to define near term applications/demonstrations
- Customers
 - Advanced Reactor Concepts
 - Next Generation Nuclear Plant
 - Light Water Reactor Sustainability
 - Small Modular Reactors
Neutronics (Proteus)

- **MC2-3 module**
 - Provides high resolution cross-section libraries for fast spectrum applications

- **UNIC transport solver modules**
 - MOC-FE provides 3-D & 2-D MOC
 - targeting problems with minimal homogenization
 - SN2ND provides 1st and 2nd Order Discrete Ordinates
 - demonstrated from desktop to petascale platforms
 - prefer to homogenize pin cells
 - PN2ND provide 1st and 2nd Order Spherical Harmonics
 - prefer to homogenize assembly internals
 - NODAL provides a diffusion theory based structured geometry solver
 - fast running, highly scalable full core simulator

- **MOCARV simulation module**
 - Integrates 2-D MOC representations of radial planes with Sn Transport in axial direction

- **Simulation modules to support reactor kinetic and fuel cycle analysis using the UNIC transport solver modules are in preliminary stages of development**
Neutronics Validation

- ZPR6 Assembly 6A
 - Well-documented critical experiment
- Recent Developments:
 - \(2 \times 10^6 \rightarrow +50 \times 10^6\)
 - 20 M vertices, 100 angles, 33 groups, \(\sim 45\) min on full Cray XT5 (~130B DOF)

Exact Geometry
ZPR6-7 Foil Measurements

- 230 group L5T5 with P3 scattering kernel were performed using SN2ND
- Existing VARIANT code could not obtain a similar solution
- Results shown are for fission in the EU foils and capture in the DU foils for the two BeO modified loadings
- Results for loadings 104 and 120 using foil cross sections from MC²-3 were equivalent in accuracy to that using MCNP based foil cross sections
- Additional Studies are ongoing on how to improve MC²-3 performance and accuracy

![Graph showing reaction rates vs. distance from core center]
Thermal Hydraulics

- **Nek5000 DNS/LES module**
 - Highly-scalable, high-order spectral element CFD
 - Direct Numerical Simulation
 - solves for stress tensor directly
 - limited to small regions because very high resolution mesh is needed
 - Large Eddy Simulation
 - uses spectral filtering or sub-grid model for smallest turbulence length scales
 - applicable to component analysis

- **Nek5000 URANS module**
 - Solves Unsteady Reynolds Averaged Navier Stokes equation using two to six equation closure models to approximate turbulent stresses
 - Applicable to large regions

- **STAR-CCM+**
 - Provides access to steady and unsteady RANS solvers of STAR-CCM+
 - Applicable to large regions, up to full core
 - Provides access to STAR-CCM+ steady state eulerian-eulerian multiphase solver

- **SHARP-IF module**
 - Intermediate fidelity simulation toolset using momentum sources to mimic effects of geometric details
 - Applicable to full core

- **SAS11 modules**
 - Lumped parameter representation of T/H and Structural Mechanics applicable to full system
 - Provides continued access to existing SFR fuel performance models
Thermal Hydraulics Findings

- Flow field evolves significantly from 7 to 217 pin assemblies
 - Reduced importance of bulk swirling and increased complexity of flow field with increasing pin count
 - Fundamental change in flow behavior between 19- and 37-pin assemblies
 - Important because most experiments have been completed using 19 pins
 - Explains observations in small number of experimental pressure drop data sets for large bundles
Framework and Meshing

- **MOAB module**
 - Highly scalable data management for mesh based simulations
 - Currently integrated into UNIC, Nek5000, Star-CCM+ and DIABLO

- **MB Coupler module**
 - Scalable parallel solution transfer between meshes of different types

- **MeshKit Modules**
 - **MeshKit Generation Library**
 - Provides consistent API access mesh generation functionalities in MeshKit or other libraries
 - Includes RGG reactor geometry/meshing tool
 - **CGM Geometry Library**
 - Library for CAD and other geometry types
 - Includes interface to Open.CASCADE, an open-source library for geometry
 - compatible with (and can import models from) CUBIT's CGM
 - **Lasso relations library**
 - Allows associate of mesh to geometry without requiring software dependency between mesh and geometry libraries
Meshing

• MeshKit’s RGG (Reactor Geometry Generator) has two components:
 - AssyGen: Assembly geometry and meshes based on text input. Supports rectangular and hexagonal assemblies
 - Coregen: Core geometry and meshes by copy, move and merge operations.
Meshing

- 1/6th of a VHTR core (12M hexes)
 - Assembly geometry: 4 min
 - Assembly meshing: 4 min
 - Copy/move/merge assemblies to form the reactor core: 23 min
Planned FY12 Workscope

- **Neutronics**
 - Finalize QA work on intermediate-fidelity neutronics
 - Wrap up remaining work on MC\(^2\)-3
 - Update MOCFE to handle non-conformal spatial meshes
 - Support data structures for conventional sub-group cross-section treatment for thermal reactors.
 - Update MOCARV (reduced vector space solution algorithm with parallel solve) and perform verification
 - Prepare documentation for SN2ND
 - Develop additional verification benchmarks
Planned FY12 Workscope

• Thermal Hydraulics
 - Continue QA work for Nek5000
 - Prepare validation benchmark simulation for 2012 OECD/NEA MATiS benchmark
 - Continue developments and validation for Nek5000-based uRANS solver
 - Extend IF treatment to whole-assembly models
 - Assess whole-assembly flow and temperature distributions for transient conditions.
 - Develop dynamic multiscale averaging techniques for turbulence simulations.
Planned FY12 Workscope

• Framework and Meshing
 ▪ Continue integration of UNIC, Nek, and Diablo into SHARP framework.
 ▪ Improve performance and flexibility of solution transfer.
 ▪ Implement surface field coupling
 ▪ Implement boundary-layer tool for inserting post-meshing boundary conditions
 ▪ Establish MeshKit/MOAB/CGM user workshop and documentation
Planned FY12 Workscope

• Systems and Safety
 - Review potential compatibility between R7 and SHARP
 - Formulate case studies for cross-fidelity comparisons between reduced- and high-fidelity simulations
 - Define algorithmic requirements for reduced-fidelity model calibration
 - Update code documentation for SAS11
 - Establish automated verification and regression testing
Planned FY12 Workscope

• Structural and Fuel Mechanics
 ▪ Complete Diablo connection to the MOAB API
 ▪ Demonstrate thermal-mechanical coupling
 ▪ Establish representative assembly geometry with operational power and flow history for fuel mechanics simulations
 ▪ Perform simulations using AMP to predict assembly distortion due to power/flow history.

• Uncertainty Quantification ($200k)
 ▪ Perform uncertainty analysis for Nek-5000 2D validation examples
 ▪ Continue developments of automatic differentiation techniques applied to SAS11
Challenges

- Multi-Resolution Scaling and Multi-Physics Coupling
- Thermal-Hydraulics
- Safety Analyses
- Meshing
- Visualization
Reactor IPSC Research Needs

- Multi-Resolution Scaling and Multi-Physics Coupling
 - Upscaling methods that enable reduced order modeling of long term transients and fuel cycle performance.
 - Multi-scale integration methods to enable development of virtual reactor simulations using multiple levels of resolution to represent a single physics.
 - Modular structural codes to understand all aspects of pressure boundary integrity (piping, vessels, steam generators, nozzles etc.).
Reactor IPSC Research Needs

- **Thermal-Hydraulics**
 - Methods to perform sensitivity studies to evaluate variability and/or flow dominance regimes during the initiating phases of natural convection cooling.
 - Predictive methods for simulation of two-phase boiling and/or flashing flows in complex geometry.
 - Water coolant chemistry models to support simulation of steam generating fouling and in-core applications.
 - Development of a coolant properties code library that contains highly-detailed correlations and uncertainty quantification data on coolant properties in liquid, vapor, and supercritical phases (e.g. provide a reference for benchmark and validation purposes).
Reactor IPSC Research Needs

• Safety Analyses
 ▪ Multi-scale integration methods to enable development of virtual reactor simulations using multiple levels of resolution to represent different physics (e.g., neutronics, fluid dynamics, heat transfer, etc.)
 ▪ Methods to perform probabilistic safety assessment of component or system performance weighted over a broad spectrum of anticipated component or inherent feature failure conditions.
 ▪ Development of a coolant properties code library that contains highly-detailed correlations and uncertainty quantification data on coolant properties in liquid, vapor, and supercritical phases (e.g. provide a reference for benchmark and validation purposes).
Reactor IPSC Research Needs

• Meshing
 ▪ Efficient, scalable, high-fidelity mesh generation methods to provide accurate descriptions of realistic nuclear reactor component geometries

• Visualization
 ▪ Expanded visualization techniques to assess system-wide coupling impacts
Expectations and Deliverables

- Mission-driven expectations
 - 20% relevance
 - 80% technical
- Deliverables clearly tied to Reactor IPSC needs and identified in proposals
 - Specific
 - Measurable
 - Achievable
 - Realistic
 - Time-bound
- Performance feedback