NUCLEAR ENERGY UNVERSITY PROGRAMS

ALD Produced B₂O₃, Al₂O₃ and TiO₂ Coatings on Gd₂O₃ Burnable Poison Nanoparticles

PI: Weimer, Alan - University of Colorado, Collaborators:

Boulder King, David M. - University of Colorado,

Boulder

Project Number: 09-765 Lichty, Paul - University of Colorado,

Boulder

Initiative/Campaign: Gen IV/Materials Rozewski, Eran - University of Colorado,

Boulder

Abstract

This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO₂, Y₂O₃:ZrO₂ (YSZ), Al₂O₃, and TiO₂, or neutron-absorbing materials, namely B (in BN or B₂O₃) and Gd (in Gd₂O₃). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:

- Researchers will apply Al₂O₃ and TiO₂ coating on Gd₂O₃ particles to fabricate homogeneous gadolinium aluminate and titanate ceramic powders and study their thermomechanical properties. Of significant interest are the thermo-physical properties of Gd₂O₃-containing composite materials, such as aluminates (GdAlO₃) and titanates (Gd₂TiO₃), so that the thermal conductivity, coefficient of thermal expansion, specific heat, etc., are known for NGNP modeling and simulations. GdAl₂O₅ and Gd₂TiO₃ can either be integrated into the fuel pellet core using traditional solid-state techniques, or can be applied to the surfaces of UO₂ particles using standard ALD techniques.
- The second aim is to coat nanometer-scale ZrO₂, YSZ, and BN/B₂O₃ films on carbonaceous powders to test the high-temperature corrosion resistance and thermomechanical properties of these chemically inert ceramic materials. The CVD-derived, porous carbonaceous layers—namely C, PyC, and SiC—are extremely sensitive to oxidation at high temperatures, especially in low-oxygen partial-pressure environments found in nuclear reactors. Researchers will test coated powders in this environment using a high-temperature thermogravimetric analyzer, and will measure corrosion resistance and thermal shock properties of C and SiC particles for varying ALD film thicknesses.