

Office of Nuclear Reactor Deployment (NE-52) Overview

Alison Hahn, Director

FY2024 CINR Webinar May 31, 2023

NE-52

Office of Nuclear Reactor Deployment

Reactor Optimization and Modernization

Light Water Reactor Sustainability

- LWR modernization and optimization
- Hydrogen production demonstrations

Advanced Reactor Modernization

- Integrated Energy Systems
- Safeguards and Security

Advanced SMR R&D

Industry Awards

Advanced Reactor Development

Advanced Reactor Technologies

- Advanced non-LWRs R&D
 - Gas-cooled/TRISO
 - Molten Salt cooled/fueled
 - Fast metal cooled
- Advanced structural materials
- Microreactor R&D
- ARC-20 Projects

Advanced Reactor Demonstration Program

- National Reactor Innovation Center
- Risk Reduction Projects
- Regulatory framework and technical support

Light Water Reactor Sustainability Program Overview

LWRS Mission: Enable long term operation of the existing commercial nuclear power fleet.

Focus: Originally material issues related to SLR applications, recent shift toward improving economic competitiveness

Plant Modernization

- Modernize technology by replacing existing I&C technologies with digital systems
- Leverage digitalization to modernize business model

Flexible Plant Operation and Generation

- Maximize revenue by producing new economic products and integrating energy storage
- Decarbonize industrial processes and support the grid as variable resources increase

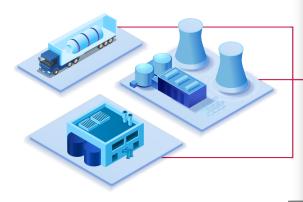
Risk Informed System Analysis

- Applies quantitative methods to optimize safety, reliability, and economics
- Coupling probabilistic risk assessment and systems margin quantification to achieve accurate modeling and representation of safety margins

Materials Research

- Understand and predict long-term behavior of materials
- Including detecting, characterizing, and mitigating aging degradation

Physical Security


- Improve efficiency of physical security posture
- Conduct research on risk-informed techniques, apply advanced modeling and simulation tools assess benefits from proposed enhancements and novel mitigation strategies

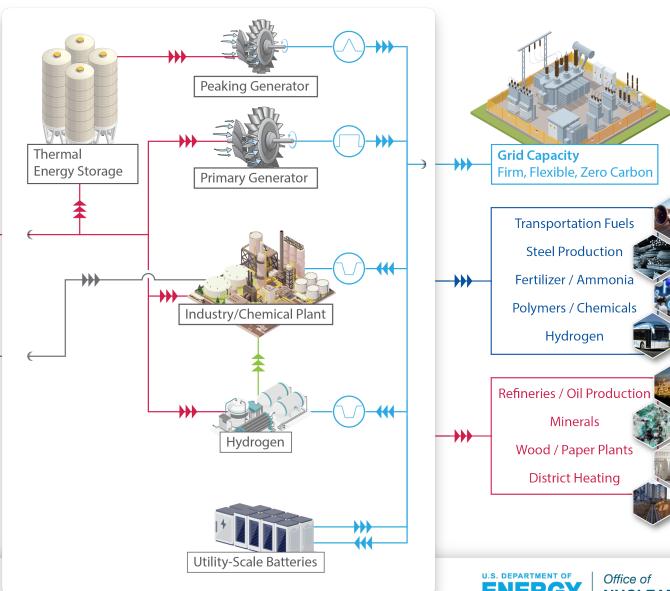
Flexible Plant Operation Generation

Flexible Reactor Siting

Data Centers Manufacturing Plants Biofuel Plants / Processing Desalination Industrial Parks / Plants **Fueling Stations**

CO2 / Carbon Sources —

Ethanol Plants


Direct Air Capture

Power Generators

Cement Plants

Biomass

Polymer / Chemical Waste

Advanced Reactor Safeguards Program Areas

Physical Protection Systems

- Reduce number of onsite responders
- Reduce upfront costs
- Evaluate enhanced safety systems
- Evaluate unique sabotage targets

Pebble Bed Reactor MC&A

- Evaluate regulatory approach
- Determine driving requirements
- Evaluate new monitoring technologies

Microreactor PPS and MC&A

- Develop a licensing framework
- Develop approaches appropriate to the very small scale
- Evaluate new monitoring technologies

Liquid Fueled MC&A

- Evaluate regulatory approach
- Develop baseline accountancy approaches
- Evaluate new measurement and monitoring technologies

International Considerations

- Consider international safeguards requirements
- Interface with NNSA programs
- Support the Gen-IV PR&PP working group

Vendor Engagements

- Design-specific MC&A and PPS challenges
- NNSA partnerships
- Translate to lessons learned or generic deliverables

Advanced Reactor Technologies (ART) Program

Mission: Support the development and commercialization of innovative concepts including microreactor, fast reactor, molten salt reactor (MSR), and high temperature gas-cooled reactor (HTGR) technologies through national laboratory-led R&D, university research programs, and cost-shared private-public industry partnerships.

Fast Reactor Technologies

- Demonstrate feasibility of advanced systems and component technologies
- Methods and code validation to support design and licensing

Gas Reactor Technologies

- Advanced alloy qualification
- Scaled integral experiments to support design and licensing

MSR Technologies

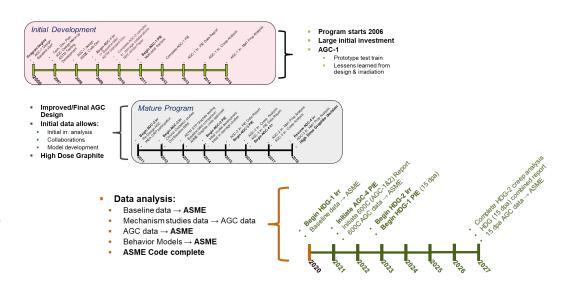
- Investigate fundamental salt properties
- Materials, models, fuels and technologies for salt-cooled and salt-fueled reactors

Microreactors

- Non-nuclear and nuclear integrated system testing supporting commercial demonstrations and end-user applications
- Maturation of innovative components and semi-autonomous operating regimes

METL Facility, Argonne National Laboratory

TRISO Fuel and Graphite Qualification Program


TRISO Fuel Development and Qualification

- Generate UCO TRISO fuel performance data to support fuel qualification.
- Establish a domestic commercial TRISO fuel fabrication capability.

Early test of lab-scale UCO fuel Designed-to-fail fuel to assess fission performance: shakedown of test product retention and transport in reactor graphite and fuel matrix. Engineering-scale particles in Fuel qualification and performance lab-scale compacts. Includes margin test. Engineering-scale UCO UCO and UO2 fuel. particles and compacts. *Includes fabrication AGR-3/4* of DTF particles; driver Fabrication fuel taken from AGR-1 fabrication campaign AGR-3/4 Irradiation Submit AGR TRISO fuel performance, PIE, and safety test results in topical reports to the NRC by 2025 that they can be used to license AGR-1 AGR-5/6/7 TRISO-fueled advanced reactors. PIE AGR-2 AGR-3/4

Graphite Qualification

- Select, irradiate, and characterize existing nuclear grades.
- Qualify nuclear grade graphite and establish design rules for use in HTGR core.

Advanced Reactor Regulatory Development

<u>Mission:</u> Coordinate with the Nuclear Regulatory Commission (NRC) and industry to address and resolve key regulatory framework issues that directly impact the "critical path" to advanced reactor demonstration and deployment.

- DOE NE cost-share support of industry-led initiatives to adapt and establish a regulatory framework for advanced reactors
 - Technology-Inclusive Content of Applications Project (TICAP) is a risk-informed, performance-based (RIPB) approach to right-size information in a license application to increase efficiency of generating and reviewing an application
 - Builds on NRC-endorsed Licensing Modernization Project systematic risk-informed process
 - Opportunity for early movers to demonstrate implementation of risk-informed, performance-based approach
- NE R&D activities directly reduce technical and regulatory risks by providing bases for establishment of licensing technical requirements
 - Establish technical insights and tools regarding radionuclide transport and release from advanced reactors, including fast reactors, gascooled reactors, and molten salt reactors
 - · Supporting NRC endorsement of codes and standards important for the manufacture of advanced reactor components
 - · Validation and access to priority material property data to be used in safety codes and models

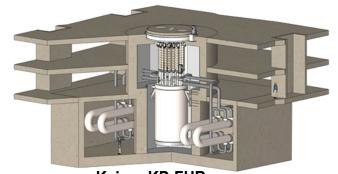
National Reactor Innovation Center (NRIC) Demonstration siting support Demonstration test beds Experimental infrastructure Advanced Construction **Technology Initiative** Visit https://nric.inl.gov

THANK YOU

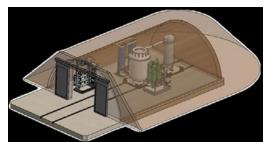
U.S. DEPARTMENT OF ENERGY

Office of NUCLEAR ENERGY

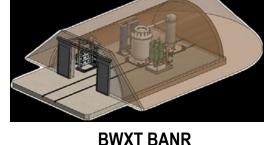
Building

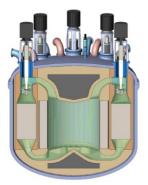


- 6 Nuclear Power Modules 462MWe (77 Mwe per module)
- Leverages proven and commercially-available LWR fuel
- Air Cooled Condensers significantly reduces water use
- Initial site characterization work completed
- First module operation planned for 2029



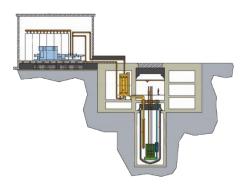
Risk Reduction Pathway Selected Technologies


- Kairos KP-FHR fluoride salt-cooled, TRISO pebble fueled MSR
- Westinghouse eVinci microreactor heat pipe cooled, TRISO compact fueled
- BWXT BANR transportable microreactor, TRISO fueled
- Holtec SMR-160 LWR-cooled SMR (only LWR design supported under ARDP)
- Southern/TerraPower Molten Chloride Fast Reactor (only liquid fueled design supported under ARDP)

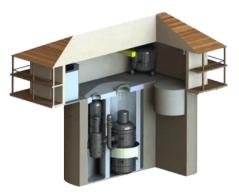


Kairos KP-FHR

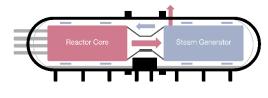
Westingouse eVinci



TerraPower MCFR



Holtec SMR-160


Advanced Reactor Concepts (ARC)-20 Awards

Advanced Reactor Concepts

General Atomics

Reactor **Key Deliverables Prime Applicant** Type Conceptual and preliminary Advanced ARC-100 100 MWe pool design of a seismically isolated type sodium-cooled fast Reactor advanced sodium-cooled Concepts reactor reactor facility Conceptual design, Increase GA-EMS 50 MWe General maturity of systems and gas-cooled fast components, develop prelim. **Atomics** modular reactor cost estimates Modular Integrated Gascooled Conceptual design and support MIT **High Temperature** for future commercialization Reactor (MIGHTR)

MIT