

Fuel Cycle Research and Development

Fuel Cycle R&D Separations and Waste Form Campaign

James C Bresee, DOE Federal Program Director Separations and Waste Form Campaign

NEUP Webinar August 2012

Campaign Objective

- Develop advanced fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion
 - Our job is to develop viable and economic technical options that will inform future decisions on the nuclear fuel cycle

Full Recycle Technology Gaps

Objectives of Major Separations R&D Areas

Advanced Aqueous (AA)	• Develop and demonstrate technologies applicable over a broad range of aqueous separation methods
Minor Actinide Sigma Team (MA)	 Enabling technology for TRU recycle options from LWR fuel Develop cost effective technology ready for deployment
Off-gas Sigma Team (OG)	 Enabling technology for any recycle option Develop cost effective technology ready for deployment
Fundamental Science / Mod. & Simulation (FS&M, M&S)	 Develop advanced methods to develop fundamental understanding of separation methods, waste forms, and waste form performance- develop predictive models based on fundamental data
Separation Process Alternatives (ASP)	 Investigate alternative process options to determine if significant cost or performance improvement can be realized
Alt. Waste Forms and Characterization (AWF, WFC)	 Open disposal options with higher performance waste forms Develop cost effective technology ready for deployment
Uranium Extraction from Seawater (FR)	• Develop and demonstrate extractants and engineered systems with double the capacity over current technology
Electrochemical Processing (DE, JFCS)	• Develop and demonstrate deployable and sustainable technology for fast reactor fuel reprocessing

- Development of fundamental understanding of advanced aqueous or electrochemical separation methods for the separation of transuranic elements (Np, Pu, Am, and/or Cm) including the development and validation of predictive modeling approaches based on fundamental data rather than empirical approaches;
- Development of novel "out of the box" separation methods that have the potential of significantly reducing complexity and cost of processing fuel while reducing proliferation risk and waste generation;
- Development of new materials for the effective capture and/or immobilization of gaseous fission products released during UNF processing.
- Innovative waste forms with orders of magnitude higher chemical durability and equal of lower processing costs compared to currently-employed waste forms such as borosilicate glass particularly for long-lived fission products such as iodine-129 and technetium-99 and for grouped fission products high-level waste.
- Application of nano-materials unique properties to revolutionize separations methods for actinides and lanthanides or fission gasses such as iodine.
- Fundamental understanding of waste form performance over geologic time scales; particularly for waste glasses and iron-based alloys.

Nuclear Energy

Develop Fundamental Understanding of Separation Processes

- Development of fundamental understanding of advanced aqueous or electrochemical separation methods for the transuranic elements (Np, Pu, Am, and/or Cm)
- Develop and validate predictive modeling approaches based on fundamental data rather than empirical approaches
 - Elucidate fundamental properties of advanced separation processes which will enable development of more robust separation technologies as well as predictive models
 - Develop understanding of process operational envelopes as well as process limitations (e.g. pH, temperature, etc.)

Novel Separation Methods

 Investigate new technologies that have the potential to be simpler, more robust and more cost effective for the separation of TRU elements

Nuclear Energy

Fission gas capture and immobilization:

- innovative methods to manage H-3 in an aqueous reprocessing scheme are needed
 - current efforts focus on voloxidation to remove H-3 from the fuel prior to aqueous dissolution
 - options for H-3 removal from high volume water streams or other potential management options
- methods for managing I-129 in aqueous reprocessing scheme
 - DF's on the order of 10,000 for the overall plant are needed
 - Both high concentration low-flow streams and low concentration high-flow streams
 - Need waste forms that are both cost effective to fabricate starting with capture media and fractional release rates on the order of 10⁻⁸ y⁻¹ in a variety of disposal environments
- krypton management methods
 - methods to separate Kr from gas streams without requiring cryogenic temperatures are desired
 - storage forms that can safely store Kr for 30 years in the presence of high heat and reactive Rb liquid metal from Kr-85 decay.

Regulation	⁸⁵ Kr	129	³ Н	¹⁴ C	Dose to public (mrem/y)
40CFR190 (Ci/GWye)	5x104	5x10 ⁻³			75 to thyroid 25 any other organ
10CFR20 (Ci/m ³ site boundary)	7x10 ⁻⁷	4x10 ⁻¹¹ (air) 2x10 ⁻⁷ (water)	1x10 ⁻⁷ (air) 1x10 ⁻³ (water)	3x10 ⁻⁷	100

Nuclear Energy

Innovative waste forms

- suitable waste forms exist for high-level waste raffinate however advanced waste forms with significant improvements in waste form durability (e.g., orders of magnitude improvement) and fabrication cost (e.g., > 30% cost reduction) will make waste management systems more efficient
 - innovative waste forms and processes that can simultaneously reduce cost and increase durability are sought
 - waste forms for I-129, TRU, and grouped fission products should be the primary focus
 - waste forms for electrochemical salt wastes containing fission products and trace TRU are also a primary focus

Fundamental understanding of waste form performance over geologic time scales

- for waste forms to be suitable their durability must be good but also predictable current high-level waste forms have several orders of magnitude uncertainty in long-term performance
 - developing a fundamental understanding of waste form performance in their disposal environments is key to the success of waste forms
 - efforts to combine theory, experiment, and modeling to better understand the performance of waste forms is needed
 - the performance aspects of interest include resistance to aqueous attack, stability under hightemperature and high radiation fields (including self-decay), and evolution of effective waste form surface area

Nuclear Energy

Nanotechnology

- Investigate the unique properties of nanomaterials that may offer improvements in advanced separation methods
- Development of novel materials to enhance separation of trivalent actinides from lanthanides
- Development of novel materials to capture fission gas materials such as iodine
- Development of advanced nanomaterials that may offer improvements in waste forms

Summary

- The FCR&D Separations and Waste Form (SWF) Program wants to partner with universities to enhance their R&D portfolio and research capabilities
- This call is tailored to research topics that are well suited for university research
- The SWF program seeks university researchers who want to actively participate in the SWF program and enhance interactions with national laboratory research staff