

Nuclear Energy University Programs (NEUP) Fiscal Year (FY) 2013 Annual Planning Webinar

Space and Defense Power Systems MS-RC-2: Radioisotope Power Systems RD&D

Alice Caponiti

August 2012

Space and Defense Power Systems Program

Nuclear Energy

Space Nuclear Power Systems Program Goals

- Design, develop, build and deliver radioisotope power systems for space exploration and national security applications
- Support research, development and design of fission power systems for space exploration and national security needs

Benefits

- Enable customer missions in locations and environments where other power systems such as chemical batteries and solar power systems do not work
- Directly support NASA missions to explore the moon, mars, outer plants and beyond

Key R&D Areas:

- Develop materials for use in the extreme environments of space applications
- Improve the efficiency of thermoelectric couples

Space and Defense Power Systems Program Overview

Nuclear Energy

- Provides nuclear power sources for space science and exploration missions and national security applications for which solar energy or other power sources are inadequate
- Maintains the capabilities to produce and deliver plutonium-238 fueled radioisotope power systems
- Reports to the Deputy Assistant Secretary for Nuclear Reactor Technologies within the Office of Nuclear Energy
- Works cooperatively with NASA to provide radioisotope power systems for use in space
- The infrastructure is comprised of capabilities and facilities at several national laboratories. DOE awards system integrator contracts to the private sector for specific power systems

Current Projects

Nuclear Energy

Mars Science Laboratory

Nuclear Thermal Propulsion Technology for NASA

Advanced Stirling Radioisotope Generator (ASRG) for NASA

high efficiency (25-30%) under development

Successful Missions

Nuclear Energy

Apollo (1969 - 1972)

Pioneer 10 (1972)

Voyager (1977)

Galileo (1989)

Ulysses (1990)

Cassini (1997)

New Horizons – Pluto

Pluto at best Hubble resolution at time of launch

Mars Science Laboratory – Landed August 6!!

Key Components and Safety Features

Pu-238 fuel (generates decay heat)

- Alpha-emitter, 87-year half life
- High melting temperature (2,400°C / 4,352°F)
- Fractures into largely non-respirable chunks upon impact
- Highly insoluble in water

Cladding (encases the fuel)

- Fuel containment (normal operations or accidents)
- High melting point -- thermal protection (2,454°C / 4,450°F)
- Ductile -- impact protection

Graphite heat source (protects fuel & cladding)

- Impact shell -- impact protection
- Insulator -- protect clad during reentry
- Aeroshell -- prevent burnup during reentry

Converter (converts heat to electricity)

- Designed to release individual aeroshell modules in cases of inadvertent reentry (minimizes terminal velocity)
- Radiator (rejects excess heat)

General Purpose Heat Source Module

Multi-Mission Radioisotope Thermoelectric Generator

RPS Process Flow and Responsibilities

Grand Challenges

Nuclear Energy

Enhanced safety performance – contain nuclear materials under accident conditions

- Materials selection ceramic fuel, cladding, aeroshell, system structural components
- Product and component characteristics

Improved system performance

- Power output and efficiency power conversion, mass
- Reliability mission duration, operating environments
- Other design goals flexibility to meet variety of mission needs

Manufacturing processes

- Enhanced worker safety
- Fewer defects
- Reduced waste generation

Transformative Research Needs -Specialized Replacement Materials

Nuclear Energy

Replacement Materials

- Current materials for aeroshell module that protects radioisotope power system fuel during potential atmospheric reentry events perform well but are difficult to manufacture.
- Nation's manufacturing base has moved on. Vendors for currently qualified materials are reluctant to continue limited production.

RD&D Goals:

Identify replacement materials that meet minimum performance requirements

Workscope Description

Nuclear Energy

Replacement Materials

- Proposals are sought for the development of alternate materials for the aeroshell module that protects radioisotope power system fuel during potential atmospheric reentry events
- The material will need ablation resistance, thermal conductivity, and structural strength (compressive and tensile) that meet minimum performance requirements

Transformative Research Needs - High Efficiency Thermoelectrics

Nuclear Energy

Thermoelectric couples

- Thermoelectric couples that have been used on all radioisotope thermal generators to date have been extremely reliable
- However they are highly inefficient. Improvements in efficiency have been at best incremental

RD&D goals:

Ultra high efficiency thermoelectric couples with demonstrated efficiency between 20-30% and a minimum operable life of 10 years.

Workscope Description

Nuclear Energy

Ultra high efficiency thermoelectric couples

- Proposals are sought for development of high efficiency thermoelectric couples (N and P legs) with a hot side temperature of 1000 C
- Couple should demonstrate a minimum efficiency between 20-30% with stable properties providing for a minimum operable life of 10 years.

