Nuclear Energy University Program (NEUP) Fiscal Year 2019 Annual Planning Webinar
Molten Salt Reactor Materials (Subtopic RC-1)
Examples of MSR Designs being Developed by Industry

- TerraPower
- MCFR
- Terrestrial Energy
- IMSR
- Kairos Power
- PB-FHR
- Reactor Vessel Cross Section
- Elysium USA, MCSFR
- Flibe Energy
- ThorCon Power
Limited ASME Nuclear Code Approved Materials for MSRs

- 304H and 316H (stainless steels, 300,000 h)
- Alloy 800H (high alloy, 300,000 h)
- 2.25Cr-1Mo (ferritic, 300,000 h)
- Modified 9Cr-1Mo (ferritic-martensitic, 300,000 h)
 - Extensions of these 5 materials to 500,000 h design lives being finalized by ASME code committees
 - ASME has all needed data, will complete in 2 to 3 years
- Alloy 617 (Ni-based alloy, Code Case in ballot for 100,000 h)
- These Class A materials are not optimum for MSR structural applications due to the extreme environments of high temperatures, corrosive salts, and neutron irradiation (including fission products)
Molten Salt Reactor Experiment (MSRE)

Operated at Oak Ridge National Laboratory from 1965 to 1969
The Primary Reactor-Based Experience with Molten Salts
Molten Salt Reactor Experiment (MSRE)

- **Fuel** (^{235}U, ^{233}U and ^{239}Pu) dissolved in a fluoride salt
 - Liquid-fuel reactor
 - Thermal-spectrum limited breeder reactor
 - 7.34 MWt
 - 1225°F (662 C) outlet temperature
 - 7Lithium-beryllium fluoride salt
 - 65% Li7F - 29.1% BeF2 - 5% ZrF4 - 0.9% UF4
 - Program cancelled when the liquid metal fast breeder reactor chosen

- **New interest in MSR**
 - Fast spectrum or thermal spectrum
 - Liquid fuel or solid fuel
 - Target diverse markets – base load electricity generation, process heat applications, desalination, water purification, remote locations
For the Relatively Low-Temp MSRE, INOR-8 (Hastelloy N) Was Developed

- Designed for compatibility with molten fluoride salts
- Minimum Cr but sufficient to provide oxidation resistance (6-8%)
- Does not embrittle on aging
- Limited aluminum, titanium, and carbon contents minimize fabrication and corrosion problems
- Carbides are stable
- Qualified in ASME Non-Nuclear Code (Sec VIII) to 1300F (700C)

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>Balance</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>15.00–18.00</td>
</tr>
<tr>
<td>Chromium</td>
<td>6.00–8.00</td>
</tr>
<tr>
<td>Iron</td>
<td>5.00</td>
</tr>
<tr>
<td>Carbon</td>
<td>0.04–0.08</td>
</tr>
<tr>
<td>Manganese</td>
<td>1.00</td>
</tr>
<tr>
<td>Silicon</td>
<td>1.00</td>
</tr>
<tr>
<td>Tungsten</td>
<td>0.50</td>
</tr>
<tr>
<td>Aluminum + titanium</td>
<td>0.50</td>
</tr>
<tr>
<td>Copper</td>
<td>0.35</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.20</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.015</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.020</td>
</tr>
<tr>
<td>Boron</td>
<td>0.010</td>
</tr>
<tr>
<td>Others, total</td>
<td>0.50</td>
</tr>
</tbody>
</table>

*Single values are maximum percentages
Several Post-Operation Issues Identified

• DeVan and Evans demonstrated that the temperature dependent solubility of CrF$_2$ in fluoride salts resulted in removal of Cr from the hottest metal surfaces and deposition of Cr on the coolest surfaces.

• INOR-8 suffered radiation-induced embrittlement primarily attributed to helium produced by interaction of thermal neutrons with 10B which is an impurity in the alloy.

• Fission product tellurium caused shallow intergranular cracking in INOR-8 exposed to the fuel salt.
The Effect of Niobium Addition on Tellurium Cracking of Hastelloy N Was Determined

- Effect of Niobium additions to Hastelloy N on grain boundary cracking after exposure to salt containing Cr$_3$Te$_4$ + Cr$_5$Te$_6$ for 250 hours at 700°C
- Shows 1-2 wt % Niobium provides most improvement

Various Nickel Alloy Developments for MSR Applications

<table>
<thead>
<tr>
<th>Element</th>
<th>Hasteloy N US</th>
<th>Hasteloy NM US</th>
<th>HN80M-VI Russia</th>
<th>HN80MT Y Russia</th>
<th>HN80MTW Russia</th>
<th>MONICR Czech Rep</th>
<th>GH3535 China</th>
<th>EM-721 France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>base</td>
<td>base</td>
<td>82</td>
<td>82</td>
<td>77</td>
<td>base</td>
<td>base</td>
<td>68.8</td>
</tr>
<tr>
<td>Cr</td>
<td>7.52</td>
<td>7.3</td>
<td>7.61</td>
<td>6.81</td>
<td>7</td>
<td>6.85</td>
<td>6.88</td>
<td>5.7</td>
</tr>
<tr>
<td>Mo</td>
<td>16.28</td>
<td>13.6</td>
<td>12.2</td>
<td>13.2</td>
<td>10</td>
<td>15.8</td>
<td>15.9</td>
<td>0.07</td>
</tr>
<tr>
<td>Ti</td>
<td>0.26</td>
<td>0.5–2.0</td>
<td>0.001</td>
<td>0.93</td>
<td>1.7</td>
<td>0.026</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>Fe</td>
<td>3.97</td>
<td>< 0.1</td>
<td>0.28</td>
<td>0.15</td>
<td></td>
<td>2.27</td>
<td>4.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn</td>
<td>0.52</td>
<td>0.14</td>
<td>0.22</td>
<td>0.013</td>
<td></td>
<td>0.037</td>
<td>0.49</td>
<td>0.086</td>
</tr>
<tr>
<td>Nb</td>
<td>-</td>
<td>-</td>
<td>1.48</td>
<td>0.01</td>
<td>< 0.01</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Si</td>
<td>0.5</td>
<td>< 0.01</td>
<td>0.040</td>
<td>0.040</td>
<td>0.13</td>
<td>1.01</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>0.26</td>
<td>-</td>
<td>0.038</td>
<td>1.12</td>
<td>0.02</td>
<td>0.88</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.06</td>
<td>-</td>
<td>0.21</td>
<td>0.072</td>
<td>6</td>
<td>0.16</td>
<td></td>
<td>25.2</td>
</tr>
</tbody>
</table>
MSR Component Doses Can Range from <1 to 25 dpa

Potential for irradiation damage of MSR materials must be assessed
In May 2018, an assessment of available materials for MSR was completed. The recommendation is to develop advanced nickel-based alloys for use in MSRs.

NEUP Structural Materials Research Supports Long-Term Needs for MSR Structural Materials in FY19
Proposals are sought to identify existing or to develop new Nickel alloy(s) that can be used for welded construction of structural components of MSR designs that use either solid or liquid fuel.

Characteristics of the candidate Nickel alloy(s) to be considered include, but not limited to,

- High temperature strength: 1400 – 1600F (760 – 870C) for long design lifetime (300,000 h) and up to 1800F (980C) for short term excursions
- Salt compatibility
- Irradiation damage resistance (including helium generation from n,α reactions with thermal neutrons)
- Resistance to fission products embrittlement
- Weldability, amenable to fabrication scale up
- Long-term microstructural stability in the MSR environment
Innovative concepts such as exploiting nano-scale interfaces within the alloy to trap defects and helium, and novel application of high-valued experiments (implantation, ion irradiation, etc.) with integrated computation materials engineering are highly encouraged.

While not specifically a part of this activity, the long-term goal of alloys developed under this effort would be their qualification for nuclear service under ASME Section III, Division 5, hence the long-term stability, fabricability, and potential capability for commercialization of candidate alloys are important.

While not required, interaction with MSR designers on their system requirements is highly encouraged.
RC-1. Innovative New Nickel Alloys for Molten Salt Reactor Structural Applications

• Collaborations with the Engineering and Physical Sciences Research Council (EPSRC) in the UK are strongly encouraged as UK funding is available for UK institutions participating as collaborators for the scope of RC-1
Points of Contact for RC-1 MSR Materials

• Federal POC
 • Sue Lesica
 • sue.lesica@nuclear.energy.gov
 • (301) 903-8755

• Technical POC
 • Sam Sham
 • ssham@anl.gov
 • (630) 252-7873