
BISON Users Manual
October 2013

Fuels Modeling and Simulation Department
Idaho National Laboratory

BISON Users Manual

J. D. Hales, S. R. Novascone, G. Pastore,
D. M. Perez, B. W. Spencer, R. L. Williamson

Fuels Modeling & Simulation Department
Idaho National Laboratory

Idaho Falls, ID

October 2013

Contents

1 Introduction 6

2 Running BISON 7
2.1 Checking Out the Code . 7
2.2 Executing BISON . 7
2.3 Getting Started . 8

2.3.1 Input to BISON . 8
2.3.2 Post Processing . 9
2.3.3 Graphical User Interface . 9

3 Overview 10
3.1 Basic Syntax . 10
3.2 BISON Syntax Page . 11
3.3 Units . 11
3.4 High-Level Description of a BISON Simulation 11

4 Global Parameters 13

5 Problem 14

6 Mesh 15

7 Variables 16

8 AuxVariables 17

9 Functions 18
9.1 ParsedFunction . 18
9.2 PiecewiseLinear . 18
9.3 PiecewiseBilinear . 19
9.4 Composite . 19

10 Boundary Conditions 21
10.1 Dirichlet . 21

10.1.1 DirichletBC . 21
10.1.2 PresetBC . 21
10.1.3 FunctionDirichletBC . 22
10.1.4 FunctionPresetBC . 22

2

10.2 Pressure . 22
10.3 PlenumPressure . 23
10.4 CoolantChannel . 24

11 Contact 27
11.1 Mechanical Contact . 27
11.2 Thermal Contact . 28

11.2.1 GapHeatTransfer . 28
11.2.2 GapHeatTransferLWR . 30

12 AuxKernels and AuxBCs 33
12.1 AuxKernels for Output . 33

12.1.1 MaterialTensorAux . 33
12.1.2 MaterialRealAux . 34

12.2 AuxKernels for Specifying Fission Rate . 34
12.2.1 FissionRateAuxLWR . 34
12.2.2 FissionRateAux . 35
12.2.3 FissionRateFromPowerDensity . 36

12.3 Other AuxKernels . 36
12.3.1 Al2O3Aux . 36
12.3.2 BurnupAux . 37
12.3.3 FastNeutronFluxAux . 37
12.3.4 FastNeutronFluenceAux . 37
12.3.5 GrainRadiusAux . 38
12.3.6 OxideAux . 38
12.3.7 PelletIdAux . 39

13 Burnup 40

14 Kernels 42
14.1 SolidMechanics . 42
14.2 Gravity . 43
14.3 Heat Conduction . 43
14.4 Heat Conduction Time Derivative . 43
14.5 Neutron Heat Source . 44
14.6 BodyForce . 44
14.7 TimeDerivative . 44
14.8 Arrhenius Diffusion . 45

15 Materials 46
15.1 Thermal Models . 46

15.1.1 HeatConductionMaterial . 46
15.1.2 ThermalFuel . 47

3

15.2 Solid Mechanics Models . 47
15.2.1 CreepPyC . 47
15.2.2 CreepSiC . 48
15.2.3 CreepUO2 . 49
15.2.4 Elastic . 51
15.2.5 IrradiationGrowthZr4 . 52
15.2.6 PyCIrradiationStrain . 52
15.2.7 MechZry . 52
15.2.8 RelocationUO2 . 54
15.2.9 ThermalIrradiationCreepZr4 . 54
15.2.10 VSwellingUO2 . 56

15.3 Fission Gas Models . 56
15.3.1 ForMas . 56
15.3.2 Sifgrs . 57

15.4 Mass Diffusion Models . 59
15.5 Other Models . 60

15.5.1 Density . 60

16 Postprocessors 61
16.1 SideAverageValue . 61
16.2 InternalVolume . 62
16.3 Reporter . 62
16.4 TimestepSize . 62
16.5 NumNonlinearIterations . 63
16.6 PlotFunction . 63
16.7 ElementIntegralPower . 63
16.8 SideFluxIntegral . 64

17 Executioner 65

18 Output 67

19 Dampers 68
19.1 MaxIncrement . 68

20 UserObjects 69
20.1 PelletBrittleZone . 69

21 Timestepping 70
21.1 Direct Time Step Control with Constant Time Step 70
21.2 Direct Time Step Control with Varying Time Step Size 70
21.3 Adaptive Time Stepping . 71

4

22 Mesh Script 73
22.1 Overview . 73

22.1.1 Run the Main Script . 73
22.1.2 Mesh Architecture . 73

22.2 Input File Review . 73
22.2.1 Pellet Type . 73
22.2.2 Pellet Collection . 75
22.2.3 Stack Options . 76
22.2.4 Clad . 76
22.2.5 Meshing Parameters . 77

22.3 Output File Review . 79
22.4 Things to Know . 79

22.4.1 Main Script . 79
22.4.2 Error Messages . 79

Bibliography 81

5

1 Introduction

BISON [1] is a finite element-based nuclear fuel performance code applicable to a variety of
fuel forms including light water reactor fuel rods, TRISO particle fuel [2], and metallic rod [3]
and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion,
for 1D spherically symmetric, 2D axisymmetric or 3D geometries. Fuel models are included to
describe temperature and burnup dependent thermal properties, fission product swelling, densifi-
cation, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity,
irradiation growth, and thermal and irradiation creep models are implemented for clad materials.
Models are also available to simulate gap heat transfer, mechanical contact, and the evolution
of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BI-
SON is based on the MOOSE framework [4] and can therefore efficiently solve problems using
standard workstations or very large high-performance computers.

Two input files are required as input when running BISON. One is a mesh file. While MOOSE
supports several file formats, the ExodusII [5] format is the one used almost exclusively in
BISON. This file commonly has “e” as its file extension. The mesh file may be generated
using CUBIT [6] or another meshing tool. A further option is a meshing script bundled with
BISON. This script, dependent on CUBIT and suitable for LWR fuel rod meshes, is the subject
of Chapter 22.

The second file is a text file. This file commonly has “i” as its extension and contains a
description of the variables, equations, boundary conditions, and material models associated
with an analysis. The structure of the text input file is the main focus of this document.

6

2 Running BISON

2.1 Checking Out the Code

To checkout the code (for INL onsite users):

cd ⇠/projects
svn co https://hpcsc.inl.gov/svn/herd/trunk

For offsite users:

cd ⇠/projects
svn co https://localhost :4443/svn/herd/trunk

It is necessary to build libmesh before building any application.

cd ⇠/projects/trunk/libmesh
./build_libmesh_moose.sh

Once libmesh has compiled successfully, you may now compile BISON.

cd ⇠/projects/trunk/bison/
make (add -jn to run on multiple "n" processors)

Once BISON has compiled successfully, it is recommended to run the tests to make sure the
version of the code you have is running correctly.

cd ⇠/projects/trunk/bison/
./run_test (add -jn to run "n" jobs at one time)

2.2 Executing BISON

When first starting out with BISON, it is recommended to start from an example problem similar
to the problem that you are trying to solve. Multiple examples can be found at bison/examples/
and bison/assessment/. It may be worth running the example problems to see how the code
works and modifying input parameters to see how the run time, results and convergence behavior
change.

To demonstrate running BISON, consider the inputSmeared.i example problem.

cd ⇠/projects/trunk/bison/examples/2D-RZ_rodlet_10pellets
To run with one processor
⇠/projects/trunk/bison/bison -opt -i inputSmeared.i
To run in parallel (4 processors)
mpiexec -n 4 ../../bison -opt -i inputSmeared.i

7

2.3 Getting Started

2.3.1 Input to BISON

Before running any problem, the power function, axial profile, mesh, and any functions needed
for boundary conditions need to be generated.

Typically, a PiecewiseLinearFile function is used to specify a complex power history.
This file has time and power specified in columns or rows, with the first row (or column) being
the time (seconds) and the second row (or column) being power (W/m). Any data file that is
used as input to BISON must be in Windows comma separated values (csv) format. Looking at
inputSmeared.i, the power history is specified as:

[./power_history]
type = PiecewiselinearFile
yourFileName = powerhistory.csv
format = rows
scale_factor = 1.0

[../]

The axial power profile, if present, is input as a PiecewiseBilinearFile. The axial peaking
factors are input as a table within the file, with the top row being the axial location from the
bottom of the rod and the left column as time. The axial peaking factors used for the example
problem inputSmeared.i for the first three axial locations is as follows:

9.44E-03, 1.54E-02, 2.13E-02
0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00
1.00E+00, 5.37E-01, 8.68E-01, 1.01E+00
1.50E+08, 5.37E-01, 8.68E-01, 1.01E+00

The mesh can either be generated with the mesh script described in Chapter 22, or if you do
not have CUBIT, you can generate a simple 2D-RZ axisymmetric mesh with smeared solid fuel
pellets (single fuel column) with the SmearedPelletMesh within BISON. To generate the mesh
similar to the one used in the example problem inputSmeared.i, the mesh block would look like:

[Mesh]
type = SmearedPelletMesh
clad_mesh_density = customize
pellet_mesh_density = customize
ny_p = 80 # Total number of axial elements in fuel
nx_p = 11 # Number of radial elements in fuel
nx_c = 5 # Number of elements through thickness of clad
ny_cu = 3 # Number of axial element of upper clad gap
ny_c = 80 # Number of axial elements of clad wall
ny_cl = 3 # Number of axial elements of lower clad cap
clad_thickness = 5.6e-4
pellet_outer_radius = 0.0041
clad_bot_height = 1.0e-3
pellet_quantity = 10
pellet_height = 0.01186
plenum_fuel_ratio = 0.045

8

clad_gap_width = 8e-5
to_bot_clad_height = 2.24e-3
elem_type = QUAD8
displacements = ’disp_x disp_y ’
patch_size = 1000

[]

2.3.2 Post Processing

BISON typically writes solution data to an ExodusII file. Data may also be written in other
formats, a simple comma separated file giving global data being the most common.

Several options exist for viewing ExodusII results files. These include commercial as well as
open-source tools. One good choice is Paraview, which is open-source.

Paraview is available on a variety of platforms. It is capable of displaying node and element
data in several ways. It will also produce line plots of global data or data from a particular node
or element. A complete description of Paraview is not possible here, but a quick overview of
using Paraview with BISON results is available in the BISON workshop material.

2.3.3 Graphical User Interface

It is worth noting that a graphical user interface (GUI) exists for all MOOSE-based applications.
This GUI is named Peacock and can be accessed by running ../peacock/peacock from the
BISON directory. Information about Peacock may be found on the MOOSE wiki page.

Peacock may be used to generate a text input file. It is also capable of submitting the analysis.
Finally, it provides basic post processing capabilities.

9

3 Overview

3.1 Basic Syntax

The input file used by BISON is broken into sections or blocks identified with square brackets.
The type of input block is placed in the opening brackets, and empty brackets mark the end of
the block.

[BlockName]
<block lines and subblocks >

[]

Each block may have subblocks, which may in turn have subblocks. The Functions block,
for example, will have multiple subblocks, each corresponding to a specific function. The line
commands in the Functions subblocks will describe the function details.

Subblocks are opened and closed as

[./subblock_name]
<line commands >

[../]

Note that the name given in the subblocks must be unique when compared with all other sub-
blocks in the current block.

Line commands are given as key/value pairs with an equal sign between them. They specify
parameters to be used by the object being described. The key is a string (no whitespace), and
the value may be a string, an integer, a real number, or a list of strings, integers, or real numbers.
Lists are given in single quotes and are separated by whitespace.

Often subblocks will include a type line command. This line command specifies the partic-
ular type of object being described. The object type indicates which line commands are appro-
priate for describing the object. BISON will give an error message if a line command is given
that does not apply for the current object type. An error message will also be given if a line
command is repeated within the current block.

In this document, line commands are shown with the keyword, an equal sign, and, in angle
brackets, the value. If a default value exists for that line command, it is shown in parentheses.

In the initial description of a block, line commands common to all subblocks will be described.
Those line commands are then omitted from the description of the subblocks but are nonetheless
valid line commands for those subblocks.

The name of a subblock ([./<name>]) is most often arbitrary. However, the names of sub-
blocks of Variables, AuxVariables, and Postprocessors define the names used for those
entities.

10

3.2 BISON Syntax Page

A complete listing of all input syntax options is available on the MOOSE wiki page. See the
link for Input File Syntax.

3.3 Units

Because BISON uses several empirical models, BISON input expects SI units. This simplifies
model input by eliminating the possibility of one set of units for one model and another set of
units for a different model. Any needed unit conversions are done inside BISON.

3.4 High-Level Description of a BISON Simulation

The primary purpose of BISON is to solve coupled systems of partial differential equations
(PDEs), where the equations represent important physics related to engineering scale nuclear
fuel behavior. Fuel simulations typically consist of solving the following energy, momentum,
and mass (or species) conservation equations,

rC

p

∂T

∂t

+— ·q� e

f

Ḟ = 0, (3.1)

— ·s+rf = 0. (3.2)

∂C

∂t

+— ·J+lC�S = 0, (3.3)

In Equation 3.1, T , r and C

p

are the temperature, density and specific heat, respectively, e

f

is
the energy released in a single fission event, and Ḟ is the volumetric fission rate.

Momentum conservation (Equation 3.2) is prescribed assuming static equilibrium at each time
increment where s is the Cauchy stress tensor and f is the body force per unit mass (e.g. gravity).
The displacement field u, which is the primary solution variable, is connected to the stress field
via the strain, through a constitutive relation.

In the equation for species conservation (3.3) C, l, and S are the concentration, radioactive
decay constant, and source rate of a given species, respectively.

Often, fuels performance problems are limited to thermomechanics, where only Equations 3.1
and 3.2 are solved.

Each term in Equations 3.1 - 3.3 (time derivatives, divergence, source, sinks, etc.) are referred
to as kernels and are discussed in greater detail in Chapter 14.

These equations are solved simultaneously using the finite element method (FEM) and JFNK
approach [7] on a discretized domain. The domain (also referred to as a mesh) may represent
uranium dioxide fuel pellets and zirconium clad in a light water reactor (LWR) simulation.
Blocks, side sets, and node sets are defined on the mesh such that material models and boundary
conditions can be assigned to different parts of the model. Details regarding the mesh, material
models, and boundary conditions can be found in chapters 6, 15, and 10 respectively.

11

Kernels, boundary conditions, and material models may require supporting information and
calculations. This is achieved through the use of Functions and AuxKernels, which are detailed
in chapters 9 and 12. For example, a function can be used to define power and time value pairs,
which would inform the source term in the energy equation (Equation 3.1). An AuxKernel could
be used to define fission rate or burnup, which could be used to inform material models that are
dependent on those values. AuxKernels can also be used for writing information, such as stress
components, to the output file.

Execution on the analysis is described in the Executioner block. Line commands describe
time stepping details and solver options. See Chapter 17 for details.

MOOSE Postprocessors compute a single scalar value at each timestep. These can be mini-
mums, maximums, averages, volumes, or any other scalar quantity. One example of the use of
Postprocessors in BISON is computing the gas volume of an LWR rod. The gas volume changes
timestep to timestep, but since it is a single scalar quantity, a Postprocessor computes this value.
Chapter 16 gives examples.

The following sections delve deeper into the topics mentioned here. The format basically
follows that of a typical BISON LWR input file and provides details for each section.

12

4 Global Parameters

[GlobalParams]
order = FIRST
family = LAGRANGE

[]

The GlobalParams block specifies parameters that are available, as appropriate, in any other
block or subblock in the input file. For example, imagine a subblock that accepts a line command
with the keyword value. If the subblock has a line command for value, that line command
will be used regardless of what is in GlobalParams. However, if the line command is miss-
ing in the subblock but defined in GlobalParams, the subblock will use the parameter defined
in GlobalParams. In the example above, the line commands order = FIRST and family =
LAGRANGE will be available in all blocks and subblocks in the remainder of the input file.

13

5 Problem

[Problem]
coord_type = <string >

[]

The Problem block is typically only used to indicate that a model should run as axisymmetric
(RZ) or spherically symmetric (RSPHERICAL). If the model is 3D, the Problem block may be
omitted.

14

6 Mesh

[Mesh]
file = <string >
displacements = <string list >
patch_size = <integer >

[]

file Mesh file name. BISON uses ExodusII mesh files.
displacements List of the displacement variables. This line must be given if the analysis

is to use contact or nonlinear geometry. Typically ’disp x disp y’ for
an axisymmetric analysis.

patch size Number of nearby elements to consider as possible contacting surfaces. A
typical value is 1000.

The Mesh block’s purpose is to give details about the finite element mesh to be used.

15

7 Variables

[Variables]
[./var1]

order = <string >
family = <string >

[../]
[./var2]

order = <string >
family = <string >
initial_condition = <real >
scaling = <real > (1)

[../]
[]

order The order of the variable. Typical values are FIRST and SECOND.
family The finite element shape function family. A typical value is

LAGRANGE.
initial condition Optional initial value to be assigned to the variable. Zero is assigned

if this line is not present.
scaling Amount to scale the variable during the solution process. This scal-

ing affects only the residual and preconditioning steps and not the
final solution values. This line command is sometimes helpful when
solving coupled systems where one variable’s residual is orders of
magnitude different that the other variables’ residuals.

The Variables block is where all of the primary solution variables are identified. The name
of each variable is taken as the name of the subblocks. Primary solution variables often in-
clude temperature (usually named temp) and displacement (usually named disp x, disp y, and
disp z).

16

8 AuxVariables

[AuxVariables]
[./var1]

order = <string >
family = <string >

[../]
[./var2]

order = <string >
family = <string >
initial_condition = <real >

[../]
[]

order The order of the variable. Typical values are CONSTANT, FIRST, and
SECOND.

family The finite element shape function family. Typical values are
MONOMIAL and LAGRANGE.

initial condition Optional initial value to be assigned to the variable. Zero is assigned
if this line is not present.

The AuxVariables block is where all of the auxiliary variables are identified. The name of
each variable is taken as the name of the subblocks. Auxiliary variables are used for quantities
such as fast neutron flux, element-averaged stresses, and other output variables.

17

9 Functions

9.1 ParsedFunction

[./parsedfunction]
type = ParsedFunction
value = <string >
vals = <real list >
vars = <string list >

[../]

type ParsedFunction

value String describing the function.
vals Values to be associated with variables in vars.
vars Variable names to be associated with values in vals.

The ParsedFunction function takes a mathematical expression in value. The expression
can be a function of time (t) or coordinate (x, y, or z). The expression can include common
mathematical functions. Examples include ’4e4+1e2*t’, ’sqrt(x*x+y*y+z*z)’, and ’if(t<=1.0,
0.1*t, (1.0+0.1)*cos(pi/2*(t-1.0)) - 1.0)’. Constant variables may be used in the expression if
they have been declared with vars and defined with vals. Further information can be found at
http://warp.povusers.org/FunctionParser/.

9.2 PiecewiseLinear

[./piecewiselinear]
type = PiecewiseLinear
x = <real list >
y = <real list >
scale_factor = <real > (1.0)
axis = <0, 1, or 2 for x, y, or z>

[../]

type PiecewiseLinear

x List of x values for x-y data.
y List of y values for x-y data.
scale factor Scale factor to be applied to resulting function. Default is 1.

18

axis Coordinate direction to use in the function evaluation. If not present, time
is used as the function input.

The PiecewiseLinear function takes pairs of x-y data as input and interpolates values based
on those pairs. By default, the x-data corresponds to time, but this can be changed to correspond
to x, y, or z coordinate with the axis line. If the function is queried outside of its range of x
data, it returns the y value associated with the closest x data point.

9.3 PiecewiseBilinear

[./piecewiselinear]
type = PiecewiseBilinear
yourFileName = <string >
axis = <0, 1, or 2 for x, y, or z>
xaxis = <0, 1, or 2 for x, y, or z>
yaxis = <0, 1, or 2 for x, y, or z>
scale_factor = <real > (1.0)
radial = <bool > (false)

[../]

type PiecewiseBilinear

yourFileName File holding your csv data.
axis Coordinate direction to use in the function evaluation.
xaxis Coordinate direction used for x-axis data.
yaxis Coordinate direction used for y-axis data.
scale factor Scale factor to be applied to resulting function. Default is 1.
radial Set to true if interpolation should be done along a radius rather than along

a specific axis. Requires xaxis and yaxis.

The PiecewiseBilinear function reads a csv file and interpolates values based on the data
in the file. The interpolation is based on x-y pairs. If axis is given, time is used as the y index.
Either xaxis or yaxis or both may be given. Time is used as the other index if one of them
is not given. If radius is given, xaxis and yaxis are used to orient a cylindrical coordinate
system, and the x-y pair used in the query will be the radial coordinate and time.

9.4 Composite

[./composite]
type = CompositeFunction
functions = <string list >
scale_factor = <real > (1.0)

[../]

19

type CompositeFunction

functions List of functions to be multiplied together.
scale factor Scale factor to be applied to resulting function. Default is 1.

The Composite function takes an arbitrary set of functions, provided in the functions pa-
rameter, evaluates each of them at the appropriate time and position, and multiplies them to-
gether. The function can optionally be multiplied by a scale factor, which specified using the
scale factor parameter.

20

10 Boundary Conditions

The BCs block is for specifying various types of boundary conditions.

[BCs]
[./name]

type = <BC type >
boundary = <string list >
...

[../]
[]

type Type of boundary condition.
boundary List of boundaries (side sets). Either boundary numbers or names.

10.1 Dirichlet

10.1.1 DirichletBC

[./dirichletbc]
type = DirichletBC
variable = <variable >
boundary = <string list >
value = <real >

[../]

type DirichletBC
variable Primary variable associated with this boundary condition.
boundary List of boundary names or ids where this boundary condition will apply.
value Value to be assigned.

10.1.2 PresetBC

The PresetBC takes the same inputs as DirichletBC and also acts as a Dirichlet boundary
condition. However, the implementation is slightly different. PresetBC causes the value of
the boundary condition to be applied before the solve begins where DirichletBC enforces the
boundary condition as the solve progresses. In certain situations, one is better than another.

21

10.1.3 FunctionDirichletBC

[./functiondirichletbc]
type = FunctionDirichletBC
variable = <variable >
boundary = <string list >
function = <string >

[../]

type FunctionDirichletBC
variable Primary variable associated with this boundary condition.
boundary List of boundary names or ids where this boundary condition will apply.
function Function that will give the value to be applied by this boundary condition.

10.1.4 FunctionPresetBC

The FunctionPresetBC takes the same inputs as FunctionDirichletBC and also acts as a
Dirichlet boundary condition. However, the implementation is slightly different. FunctionPresetBC
causes the value of the boundary condition to be applied before the solve begins where FunctionDirichletBC
enforces the boundary condition as the solve progresses. In certain situations, one is better than
another.

10.2 Pressure

[./Pressure]
[./pressure]

boundary = <string list >
factor = <real > (1)
function = <string >

[../]
[../]

boundary List of boundary names or ids where this boundary condition will apply.
factor Magnitude of pressure to be applied. If function is also given, factor is mul-

tiplied by the output of the function and then applied as the pressure.
function Function that will give the value to be applied by this boundary condition.

The Pressure boundary condition uses two levels of nesting within the BCs block. This
allows the pressure to be applied properly in all coordinate directions although it is specified one
time only.

22

10.3 PlenumPressure

[./PlenumPressure]
[./plenumpressure]

boundary = <string list >
initial_pressure = <real > (0)
startup_time = <real > (0)
R = <real >
output_initial_moles = <string >
temperature = <string >
volume = <string >
material_input = <string list >
output = <string >
refab_time = <real list >
refab_pressure = <real list >
refab_volume = <real list >
refab_type = <integer list >

[../]
[../]

boundary List of boundary names or ids where this boundary condition will
apply.

initial pressure The initial pressure in the plenum.
startup time The amount of time during which the pressure will ramp from

zero to its true value.
R The universal gas constant. In BISON, SI units are used, and R

should be 8.3143.
output initial moles If given, the reporting Postprocessor to use for the initial moles

of gas.
temperature The name of the Postprocessor holding the average temperature

value.
volume The name of the Postprocessor holding the internal volume.
material input The name of the Postprocessors that hold the amount of mate-

rial injected into the plenum.
output If given, the reporting Postprocessor to use for the plenum pres-

sure value.
refab time The time(s) at which the plenum pressure must be reinitialized

(likely due to fuel rod refabrication).
refab pressure The pressure of fill gas at refabrication. Number of values must

match number in refab time.
refab temperature The temperature at refabrication. Number of values must match

number in refab time.
refab volume The gas volume at refabrication. Number of values must match

number in refab time.

23

The PlenumPressure block is used to specify internal rod pressure as a function of tempera-
ture, cavity volume, and moles of gas.

The PlenumPressure boundary condition uses two levels of nesting within the BCs block.
This allows the pressure to be applied properly in all coordinate directions although it is specified
one time only.

10.4 CoolantChannel

[CoolantChannel]
[./coolantchannel]

boundary = <string list >
variable = <string >
axial_power_profile = <string >
cond_metal = <real >
cond_oxide = <real >
coupledEnthalpy = <string >
direction = <string >
direction2 = <string >
flow_area = <real >
heat_flux = <string >
heat_transfer_coefficient = <string or real >
heat_transfer_mode = <string > (0)
heated_diameter = <real >
heated_perimeter = <real >
htc_correlation_type = <string >
hydraulic_diameter = <real >
inlet_massflux = <string or real >
inlet_pressure = <string or real >
inlet_temperature = <string or real >
linear_heat_rate = <string >
number_axial_zone = <integer > (0)
number_lateral_zone = <integer > (1)
oxide_thickness = <string >
oxide_model = <string > (zirconia)
pbr = <real >
rod_diameter = <real > (0.01)
rod_pitch = <real > (0.0126)

[../]
[]

boundary List of boundaries. Typically only one boundary id is given.
variable Name of variable associated with this BC. Typically temp.
axial power profile Function name for function describing axial power factors.
cond metal Conductivity of the metal. Used if oxide model is user.
cond oxide Conductivity of the oxide. Used if oxide model is user.

24

coupledEnthalpy Variable name. If given, enthalpy is taken from this variable
directly instead of being calculated.

direction One of x, y, or z. Coordinate direction associated with fluid
flow. Default is y.

direction2 One of x, y, or z. Coordinate direction associated with lat-
eral dimension of model. Default is x. This input is used
for plate geometry.

flow area Flow area. If used, must be used with heated diameter,
heated perimeter, and hydraulic diameter. If used,
rod diameter and rod pitch will be ignored.

heat flux Function name for function describing the heat flux at the
cladding surface.

heat transfer coefficient Either a function name for a function describing the heat
transfer coefficient or a real value to be assigned as the heat
transfer coefficient. If present, other parameters controlling
the heat transfer coefficient calculation will be ignored.

heat transfer mode One of 0 (automatic), 1 (natural convection), 2 (forced liq-
uid convection), 3 (subcooled boiling), 4 (saturated boil-
ing), or 5 (DNB low flow).

heated diameter Heated diameter. If used, must be used with flow area,
heated perimeter, and hydraulic diameter. If used,
rod diameter and rod pitch will be ignored.

heated perimeter Heated perimeter. If used, must be used with flow area,
heated diameter, and hydraulic diameter. If used,
rod diameter and rod pitch will be ignored.

htc correlation type One of 1 (Thom), 2 (Jens Lottes), 3 (Chen), 4 (Shrock-
Grossman), or 5 (constant).

hydraulic diameter Hydraulic diameter. If used, must be used with flow area,
heated perimeter, and heated diameter. If used,
rod diameter and rod pitch will be ignored.

inlet massflux Either a function name for a function describing the inlet
mass flux or a real value to be assigned as the inlet mass
flux.

inlet pressure Either a function name for a function describing the inlet
pressure or a real value to be assigned as the inlet pressure.

inlet temperature Either a function name for a function describing the inlet
temperature or a real value to be assigned as the inlet tem-
perature.

linear heat rate Function name for a function describing the linear heat rate.

25

number axial zone Number of axial divisions along the cladding to be used in
integrating the heat flux.

number lateral zone Number of lateral divisions along the cladding to be used
in integrating the heat flux. This input is used for plate
geometry.

oxide thickness Name of AuxVariable representing the oxide thickness. If
not given, the calculated heat transfer coefficient will not
account for an oxide layer.

oxide model One of zirconia, alumina, or user.
rod diameter Diameter of the fuel rod.
rod pitch Pitch or spacing between fuel rods.

The effect of the coolant on the heat transfer at the exterior cladding surface can be modeled
using the CoolantChannel feature. This feature appears in the input file in its own block (i.e.,
not inside the BCs block).

The presence of some input parameters causes others to be ignored. The following describes
the input parameter precedence.

If heat transfer coefficient is given, its value will be assigned to the given boundary.
All other parameters related to the heat transfer coefficient calculation are ignored.

Enthalpy is taken as coupledEnthalpy if present. Otherwise, heat flux is calculated based on
linear heat rate, specification of number axial zone, and specification of heat flux, in
highest precedence order. The integrated heat flux is computed based on the same precedence.
As an example, if number axial zone and heat flux are specified, heat flux will be ignored.
These are used as inputs to the heat transfer coefficient correlations.

26

11 Contact

Finite element contact enforces constraints between surfaces in the mesh. Mechanical contact
prevents penetration and develops contact forces. Thermal contact transfers heat between the
surfaces.

11.1 Mechanical Contact

[Contact]
[./contact]

disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
formulation = <string > (DEFAULT}
friction_coefficient = <real > (0)
master = <string >
model = <string > (frictionless)
normal_smoothing_distance = <real >
normal_smoothing_method = <string > (edge_based)
order = <string > (FIRST)
penalty = <real > (1e8)
slave = <string >
tangential_tolerance = <real >
tension_release = <real >

[../]
[]

disp x Variable name for displacement variable in x direction.
Typically disp x.

disp y Variable name for displacement variable in y direction.
Typically disp y.

disp z Variable name for displacement variable in z direction.
Typically disp z.

formulation One of DEFAULT or PENALTY.
friction coefficient The friction coefficient.
master The boundary id for the master surface.
model One of frictionless, glued, or coulomb.

27

normal smoothing distance Distance from face edge in parametric coordinates over
which to smooth the contact normal. 0.1 is a reasonable
value.

normal smoothing method One of edge based or nodal normal based. If
nodal normal based, must also have a NodalNormals
block.

order The order of the variable. Typical values are FIRST and
SECOND.

penalty The penalty stiffness value to be used in the constraint.
slave The boundary id for the slave surface.
tangential tolerance Tangential distance to extend edges of contact surfaces.
tension release Tension release threshold. A node will not be released if its

tensile load is below this value. Must be positive.

In LWR fuel analysis, the cladding surface is typically the master surface, and the fuel surface
is the slave surface. It is good practice to make the master surface the coarser of the two.

The robustness and accuracy of the mechanical contact algorithm is strongly dependent on
the penalty parameter. If the parameter is too small, inaccurate solutions are more likely. If the
parameter is too large, the solver may struggle.

The DEFAULT option uses an enforcement algorithm that moves the internal forces at a slave
node to the master face. The distance between the slave node and the master face is penalized.
The PENALTY algorithm is the traditional penalty enforcement technique.

11.2 Thermal Contact

11.2.1 GapHeatTransfer

[ThermalContact]
[./thermalcontact]

type = GapHeatTransfer
disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
emissivity_1 = <real > (0)
emissivity_2 = <real > (0)
gap_conductivity = <real > (1)
gap_conductivity_function = <string >
gap_conductivity_function_variable = <string >
master = <string >
min_gap = <real > (1e-6)
max_gap = <real > (1e6)
normal_smoothing_distance = <real >
normal_smoothing_method = <string > (edge_based)
order = <string > (FIRST)

28

quadrature = <bool > (false)
slave = <string >
stefan_boltzmann = <real > (5.669e-8)
variable = <string >

[../]
[]

type GapHeatTransfer
disp x Variable name for displacement variable in x di-

rection. Typically disp x. Optional.
disp y Variable name for displacement variable in y di-

rection. Typically disp y. Optional.
disp z Variable name for displacement variable in z di-

rection. Typically disp z. Optional.
emissivity 1 The emissivity of the fuel surface.
emissivity 2 The emissivity of the cladding surface.
gap conductivity The thermal conductivity of the gap material.
gap conductivity function Thermal conductivity of the gap material as a

function. Multiplied by gap conductivity.
gap conductivity function variable Variable to be used in

thermal conductivity function in place of
time.

master The boundary id for the master surface.
min gap The minimum permissible gap size.
max gap The maximum permissible gap size.
normal smoothing distance Distance from face edge in parametric coordi-

nates over which to smooth the contact normal.
0.1 is a reasonable value.

normal smoothing method One of edge based or nodal normal based.
If nodal normal based, must also have a
NodalNormals block.

order The order of the variable. Typical values are
FIRST and SECOND.

quadrature Whether or not to use quadrature point-based
gap heat transfer.

slave The boundary id for the slave surface.
stefan boltzmann The Stefan-Boltzmann constant.
tangential tolerance Tangential distance to extend edges of contact

surfaces.

The quadrature option is recommended with second-order meshes.

29

11.2.2 GapHeatTransferLWR

[ThermalContact]
[./thermalcontact]

type = GapHeatTransferLWR
contact_coef = <real > (10)
contact_pressure = <string >
disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
emissivity_1 = <real > (0)
emissivity_2 = <real > (0)
external_pressure = <real > (0)
initial_gas_fractions = <real list > (1 0 0 0 0 0 0 0 0 0)
initial_moles = <string >
gas_released = <string list >
gas_released_fractions = <real list > (0 0 0.153 0.847 0 0 0 0 0 0)
jump_distance_fuel = <real > (0)
jump_distance_clad = <real > (0)
jump_distance_model = <string > (DIRECT)
master = <string >
meyer_hardness <real > (0.68e9)
min_gap = <real > (1e-6)
max_gap = <real > (1e6)
normal_smoothing_distance = <real >
normal_smoothing_method = <string > (edge_based)
order = <string > (FIRST)
quadrature = <bool > (false)
refab_gas_fractions = <real list >
refab_time = <real list >
refab_type = <integer list >
roughness_fuel = <real > (1e-6)
roughness_clad = <real > (1e-6)
roughness_coef = <real > (1.5)
slave = <string >
stefan_boltzmann = <real > (5.669e-8)
variable = <string >

[../]
[]

type GapHeatTransferLWR
contact coef The leading coefficient on the solid-solid conduction rela-

tion (1/
p

m).
contact pressure The contact pressure variable. Typically

contact pressure.
disp x Variable name for displacement variable in x direction.

Typically disp x. Optional.

30

disp y Variable name for displacement variable in y direction.
Typically disp y. Optional.

disp z Variable name for displacement variable in z direction.
Typically disp z. Optional.

emissivity 1 The emissivity of the fuel surface.
emissivity 2 The emissivity of the cladding surface.
external pressure The external (gas) pressure.
initial gas fractions The initial fractions of constituent gases (helium, ar-

gon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, water vapor).

initial moles The Postprocessor that will give the initial moles of gas.
gas released List of one or more Postprocessors that give the gas re-

leased.
gas released fractions The fraction of released gas that is assigned to helium, ar-

gon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, and water vapor. One set of
fractions for each Postprocessor listed in gas released.

jump distance fuel The temperature jump distance of the fuel.
jump distance clad The temperature jump distance of the clad.
jump distance model One of DIRECT (specify distances directly) or KENNARD

(jump distances computed based on gas properties).
master The boundary id for the master surface.
meyer hardness The Meyer hardness of the softer material (Pa).
min gap The minimum permissible gap size.
max gap The maximum permissible gap size.
normal smoothing distance Distance from face edge in parametric coordinates over

which to smooth the contact normal. 0.1 is a reasonable
value.

normal smoothing method One of edge based or nodal normal based. If
nodal normal based, must also have a NodalNormals
block.

order The order of the variable. Typical values are FIRST and
SECOND.

plenum pressure The name of the plenum pressure Postprocessor.
quadrature Whether or not to use quadrature point-based gap heat

transfer.
refab gas fractions The fractions of constituent gases at refabrication (helium,

argon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, water vapor).

31

refab time The time(s) at which refabrication occurs. If multiple times
are given, multiple sets of refab gas fractions and mul-
tiple refab types must be given.

refab type One of 0 (instantaneous reset, evolving gas fraction there-
after) or 1 (instantaneous reset, constant gas fraction there-
after).

roughness fuel The roughness of the fuel surface.
roughness clad The roughness of the cladding surface.
roughness coef The coefficient for the roughness summation.
slave The boundary id for the slave surface.
stefan boltzmann The Stefan-Boltzmann constant.
tangential tolerance Tangential distance to extend edges of contact surfaces.

GapHeatTransferLWR differs from GapHeatTransfer in that the gap conductivity is com-
puted based on the gases in the gap. To this may also be added the effect of solid-solid con-
duction. The gas in the gap may be flushed in a refabrication step. (See also PlenumPressure
(10.3).)

The quadrature option is recommended with second-order meshes.

32

12 AuxKernels and AuxBCs

AuxKernels and AuxBCs are used to compute values for AuxVariables. They often compute
quantities based on functions, solution variables, and material properties.

[AuxKernels]
[./name]

type = <AuxKernel type >
block = <string list >
...

[../]
[]

[AuxBCs]
[./name]

type = <AuxBC type >
boundary = <string list >
...

[../]
[]

type Type of auxiliary kernel.
block List of blocks. Either block numbers or names.
boundary List of boundaries (side sets). Either boundary numbers or names.

All AuxKernels act on blocks. All AuxBCs act on boundaries. If no block or boundary is
specified, the AuxKernel or AuxBC will act on the entire model.

Note that the same types are recognized in AuxKernels and AuxBCs.

12.1 AuxKernels for Output

12.1.1 MaterialTensorAux

[./materialtensoraux]
type = MaterialTensorAux
tensor = <material property tensor >
variable = <variable >
index = <integer >
quantity = <string >
point1 = <vector > (0, 0, 0)
point2 = <vector > (0, 1, 0)

33

[../]

type MaterialTensorAux

tensor Name of second-order tensor material property. A typical second-order tensor
material property is stress.

variable Name of AuxVariable that will hold result.
index Index into tensor, from 0 to 5 (xx, yy, zz, xy, yz, zx). Either index or quantity

must be specified.
quantity One of VonMises, PlasticStrainMag, Hydrostatic, Hoop, Radial,

Axial, MaxPrincipal, MedPrincipal, MinPrincipal, FirstInvariant,
SecondInvariant, ThirdInvariant, or TriAxiality. Either index or
quantity must be specified.

The MaterialTensorAux AuxKernel is used to output quantities related to second-order ten-
sors used as material properties. Stress and strain are common examples of these tensors. The
AuxKernel allows output of specific tensor entries or quantities computed from the entire ten-
sor. Typically, the AuxVariable computed by MaterialTensorAux will be an element-level,
constant variable. The computed value will be the volume-averaged quantity over the element.

12.1.2 MaterialRealAux

[./materialrealaux]
type = MaterialRealAux
property = <material property >
variable = <variable >

[../]

type MaterialRealAux

tensor Name of material property.
variable Name of AuxVariable that will hold result.

The MaterialRealAux AuxKernel is used to output material properties. Typically, the Aux-
Variable computed by MaterialTensorAux will be an element-level, constant variable. The
computed value will be the volume-averaged quantity over the element.

12.2 AuxKernels for Specifying Fission Rate

Note that these AuxKernels are not needed if the Burnup block (see Chapter 13) is present.

12.2.1 FissionRateAuxLWR

34

[./fissionrateauxlwr}
type = FissionRateAuxLWR
value = <real > (1)
function1 = <string >
function2 = <string >
pellet_diameter = <real > (0.0082)
pellet_inner_diameter = <real > (0)
fuel_volume_ratio = <real > (1)
energy_per_fission = <real > (3.28451e-11)

[../]

value Fission rate if function1 is not present. Scale factor if
function1 is given.

function1 Function describing rod averaged linear power. This power is
the total power, the power from the volumetric fission rate times
the volume of fuel times the energy per fission.

function2 Function describing axial power profile.
pellet diameter The diameter of the fuel.
pellet inner diameter The inner diameter of the fuel.
fuel volume ratio Reduction factor for deviation from right circular cylinder fuel.

The ratio of actual volume to right circular cylinder volume.
energy per fission The energy released per fission in J/fission.

FissionRateAuxLWR is designed to calculate fission rate given rod averaged linear power and
pellet dimensions.

12.2.2 FissionRateAux

[./fissionrateaux]
type = FissionRateAux
variable = <string >
block = <string list >
function = <string >
value = <real >

[../]

type FissionRateAux

variable Name of AuxVariable that will hold fission rate. Typically fission rate.
value Value of fission rate. If function is present, value is multiplied by the function

value.
function Function describing the fission rate.

35

The FissionRateAux AuxKernel simply sets the value of a variable that stores the fission rate
(fissions/m3/s) to either a constant value or a value prescribed by a function. If both function
and value are provided, value is used as a scaling factor on the function.

12.2.3 FissionRateFromPowerDensity

[./ fissionratefrompowerdensity]
type = FissionRateFromPowerDensity
variable = <string >
block = <string list >
function = <string >
energy_per_fission = <real >

[../]

type FissionRateAux

variable Name of AuxVariable that will hold fission rate. Typically
fission rate.

function Function describing the power density in W/m3.
energy per fission Energy released per fission in J/fission.

Like FissionRateAux, the FissionRateFromPowerDensity AuxKernel sets the fission rate
based on a function and a scaling factor. This AuxKernel is intended to be used specifically in
the case where the input function defines the power density (in W/m3). The power density is
divided by user-provided constant that defines the energy per fission (J/fission) to provide the
fission rate in (fissions/m3/s).

12.3 Other AuxKernels

12.3.1 Al2O3Aux

[./al2o3aux]
type = Al2O3Aux
variable = <string >
function = <string >
model = <string > (function)
temp = <string >

[../]

type Al2O3Aux

variable Variable name corresponding to the Al2O3 thickness.
function Function describing the Al2O3 thickness as a function of time.
model One of function or griess. The griess option invokes a correlation appropriate for

plate fuel.

36

temp Variable name for temperature variable. Typically temp.

12.3.2 BurnupAux

[./burnupaux]
type = BurnupAux
fission_rate = <string >
density = <real >
molecular_weight = <real > (0.270)

[../]

type BurnupAux

variable Variable name corresponding to the burnup. Typically burnup.
fission rate Variable name corresponding to the fission rate. Typically

fission rate.
density The initial fuel density.
molecular weight The molecular weight.

BurnupAux computes burnup given the fission rate. Note that this AuxKernel is not needed if
the Burnup block (see Chapter 13) is present.

12.3.3 FastNeutronFluxAux

[./fastneutronfluxaux]
type = FastNeutronFluxAux
variable = <string >
fast_neutron_flux = <string >

[../]

type FastNeutronFluxAux

variable Variable name corresponding to the fast neutron flux. Typically
fast neutron flux.

rod ave lin pow Function describing rod averaged linear power. This power is the
total power, the power from the volumetric fission rate times the
volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.
factor The fast neutron flux if rod ave lin pow is not given. Otherwise,

a scale factor. Recommended scale factor value is 3e13 (n/(m2-
s)/(W/m)).

12.3.4 FastNeutronFluenceAux

37

[./fastneutronfluenceaux]
type = FastNeutronFluenceAux
variable = <string >
fast_neutron_flux = <string >

[../]

type FastNeutronFluenceAux

variable Variable name corresponding to the fast neutron fluence. Typically
fast neutron fluence.

fast neutron flux Variable name corresponding to the fast neutron flux. Typically
fast neutron flux.

12.3.5 GrainRadiusAux

[./grainradiusaux]
type = GrainRadiusAux
variable = <string >
temp = <string >

[../]

type GrainRadiusAux

variable Variable name corresponding to the fuel grain radius.
temp Variable name for temperature variable. Typically temp.

The GrainRadiusAux model is a simple empirical model for calculating grain growth. This
can be used with the Sifgrs model (15.3.2).

12.3.6 OxideAux

[./oxideaux]
type = OxideAux
variable = <string >
fast_neutron_flux = <string >
lithium_concentration = <real > (0)
model_option = <int> (1)
oxide_scale_factor = <real > (1)
tin_content = <real > (1.38)
temp = <string >
use_coolant_channel = <bool > (false)

type OxideAux

variable Variable name corresponding to the zirconia thickness.

38

fast neutron flux Variable name corresponding to the fast neutron flux. Typically
fast neutron flux.

lithium concentration Lithium concentration in ppm.
model option If 1, uses the EPRI KWU CE model. Otherwise, uses the EPRI

SLI model.
oxide scale factor Scale factor applied to the rate of oxide growth.
tin content Tin content in wt%.
temp Variable name for temperature variable. Typically temp.
use coolant model If true, model will adjust surface temperature based on the

coolant channel model.

12.3.7 PelletIdAux

[./pelletidaux]
type = PelletIdAux
a_lower = <real >
a_upper = <real >
number_pellets = <integer >

[../]

type PelletIdAux
a lower The lower axial coordinate of the fuel stack.
a upper The upper axial coordinate of the fuel stack.
number pellets Number of fuel pellets.

PelletIdAux is used to compute a pellet number. It may be used with a discrete pellet or
smeared fuel column mesh.

39

13 Burnup

[Burnup]
[./burnup]

rod_ave_linear_power = <string >
axial_power_profile = <string >
num_radial = <integer >
num_axial = <integer >
a_lower = <real >
a_upper = <real >
fuel_inner_radius = <real > (0)
fuel_outer_radius = <real > (0.0041)
fuel_volume_ratio = <real > (1)
density = <real >
energy_per_fission = <real > (3.28451e-11)
i_enrich = <real list > (0.05, 0.95, 0, 0, 0, 0)
sigma_c = <real list > (9.7, 0.78, 58.6, 100, 50, 80)
sigma_f = <real list > (41.5, 0, 105, 0.584, 120, 0.458)
sigma_a_thermal = <real list > (sum of sigma_c and sigma_f)
N235 = <string >
N238 = <string >
N238 = <string >
N240 = <string >
N241 = <string >
N242 = <string >
RPF = <string >

[../]
[]

block List of fuel blocks. Either block numbers or names.
rod ave lin pow Function describing rod averaged linear power. This power is the

total power, the power from the volumetric fission rate times the
volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.
num radial Number of radial divisions in secondary grid used to compute ra-

dial power profile.
num axial Number of axial divisions in secondary grid used to compute radial

power profile.
a lower The lower axial coordinate of the fuel stack.
a upper The upper axial coordinate of the fuel stack.

40

fuel inner radius The inner radius of the fuel.
fuel outer radius The outer radius of the fuel.
fuel volume ratio Reduction factor for deviation from right circular cylinder fuel. The

ratio of actual volume to right circular cylinder volume.
density The initial fuel density.
energy per fission The energy released per fission in J/fission.
i enrich The initial enrichment for the six isotopes.
sigma c The capture cross sections for the six isotopes.
sigma f The fission cross sections for the six isotopes.
sigma a thermal The absorption (thermal) cross sections for the six isotopes.
N235 Indicates that the output of the concentration of N235 is required.

Typically N235.
N238 Indicates that the output of the concentration of N238 is required.

Typically N238.
N239 Indicates that the output of the concentration of N239 is required.

Typically N239.
N240 Indicates that the output of the concentration of N240 is required.

Typically N240.
N241 Indicates that the output of the concentration of N241 is required.

Typically N241.
N242 Indicates that the output of the concentration of N242 is required.

Typically N242.
RPF Indicates that the output of the radial power factor is required. Typ-

ically RPF.

The Burnup block computes fission rate and burnup for LWR fuel including the radial power
factor. It is not appropriate for other fuel configurations. Use of the Burnup block will cause
BISON to create and populate burnup, fission rate, and optionally other AuxVariables.

The radial power factor calculation is performed on a secondary numerical grid, created inter-
nally by BISON. This is the reason for the num radial and num axial line commands. Once the
fission rate, burnup, and other quantities are computed on this secondary grid, they are mapped
back to the finite element mesh.

41

14 Kernels

Kernels are used to volume integrals associated with a given term in a PDE. They often compute
quantities based on functions, solution variables, auxiliary variables, and material properties.

[Kernels]
[./name]

type = <kernel type >
block = <string list >
...

[../]
[]

type Type of kernel.
block List of blocks. Either block numbers or names.

All Kernels act on blocks. If no block is specified, the Kernel will act on the entire model.

14.1 SolidMechanics

[SolidMechanics]
[./solidmechanics]

disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
disp_r = <variable >
temp = <variable >

[../]
[]

disp x Variable name for displacement variable in x direction. Typically disp x.
disp y Variable name for displacement variable in y direction. Typically disp y.
disp z Variable name for displacement variable in z direction. Typically disp z for 3D

and disp y for axisymmetric models.
disp r Variable name for displacement variable in radial direction for axisymmetric or

spherically symmetric cases. Typically disp x.
temp Variable name for temperature variable. Necessary for thermal expansion. Typi-

cally temp.

42

The SolidMechanics block specifies inputs for the divergence of stress as part of the equa-
tions of solid mechanics. The divergence of stress is a Kernel in MOOSE nomenclature. The
SolidMechanics block informs MOOSE of the divergence kernels but is not placed inside the
Kernels block in the input file.

14.2 Gravity

[./gravity]
type = Gravity
variable = <variable >
value = <real >

[../]

type Gravity

variable Variable name corresponding to the displacement direction in which the gravity
load should be applied.

value Acceleration of gravity. Typically -9.81 (m/s2).

Gravity may be applied to the model with this kernel. The required density is computed and
provided internally given inputs in the Materials block.

14.3 Heat Conduction

[./heatconduction]
type = HeatConduction
variable = <variable >

[../]

type HeatConduction

variable Variable name corresponding to the heat conduction equation. Typically temp.

Kernel for diffusion of heat or divergence of heat flux.

14.4 Heat Conduction Time Derivative

[./ heatconductiontimederivative]
type = HeatConductionTimeDerivative
variable = <variable >

[../]

43

type HeatConductionTimeDerivative

variable Variable name corresponding to the heat conduction equation. Typically temp.

Kernel for rC

p

∂T/∂t term of the heat equation.

14.5 Neutron Heat Source

[./neutronheatsource]
type = NeutronHeatSource
variable = <variable >
fission_rate = <variable >

[../]

type NeutronHeatSource

variable Variable name corresponding to the heat conduction equation. Typically
temp.

fission rate Variable name corresponding to the fission rate. Typically fission rate.

Kernel for the volumetric heat source associated with fission.

14.6 BodyForce

[./bodyforce]
type = BodyForce
variable = <variable >
value = <real >
function = <string >

[../]

type BodyForce

variable Variable associated with this volume integral.
value Constant included in volume integral. Multiplied by the value of function if

present.
function Function to be multiplied by value and used in the volume integral.

Kernel for applying an arbitrary body force to the model.

14.7 TimeDerivative

[./timederivative]

44

type = TimeDerivative
variable = <variable >

[../]

type TimeDerivative

variable Variable associated with this volume integral.

Kernel for applying a time rate of change term (∂u/∂t) to the model.

14.8 Arrhenius Diffusion

[./arrheniusdiffusion]
type = ArrheniusDiffusion
variable = <variable >

[../]

type ArrheniusDiffusion

variable Variable associated with this volume integral.

Kernel for applying an Arrhenius diffusion term. If present, an ArrheniusDiffusionCoef
material model must also be present.

45

15 Materials

The Materials block is for specifying material properties and models.

[Materials]
[./name]

type = <material type >
block = <string list >
...

[../]
[]

type Type of material model
block List of blocks. Either block numbers or names.

15.1 Thermal Models

15.1.1 HeatConductionMaterial

[./ heatconductionmaterial]
type = HeatConductionMaterial
thermal_conductivity = <real >
thermal_conductivity_x = <string >
thermal_conductivity_y = <string >
thermal_conductivity_z = <string >
thermal_conductivity_temperature_function = <string >
specific_heat = <real >
specific_heat_temperature_function = <string >

[../]

type HeatConductionMaterial

thermal conductivity Thermal conductivity.
thermal conductivity x Thermal conductivity Postprocessor

for the x direction.
thermal conductivity y Thermal conductivity Postprocessor

for the y direction.
thermal conductivity z Thermal conductivity Postprocessor

for the z direction.

46

thermal conductivity temperature function Function describing thermal conduc-
tivity as a function of temperature.

specific heat Specific heat.
specific heat temperature function Function describing specific heat as a

function of temperature.

HeatConductionMaterial is a general-purpose material model for heat conduction. It sets
the thermal conductivity and specific heat at integration points.

15.1.2 ThermalFuel

[./thermalfuel]
type = ThermalFuel
temp = <string >
burnup = <string >
porosity = <string >
initial_porosity = <real > (0.05)
oxy_to_metal_ratio = <real > (2.0)
Pu_content = <real > (0.0)
Gd_content = <real > (0.0)
model = < 0, 1, 2, 3, 4, or 5 for

Duriez , Amaya , Fink -Lucuta , Halden , NFIR , or Modified NFIR >
[../]

type ThermalFuel

temp Name of temperature variable. Typically temp.
burnup Name of burnup variable. Typically burnup.
porosity Name of porosity variable. Typically porosity. Optional.
initial porosity Initial porosity.
oxy to metal ratio Ratio of oxygen atoms to metal atoms.
Pu content Weight fraction of Pu in MOX fuel (typically 0.07).
Gd content Weight fraction of Gd in fuel.

The ThermalFuel model computes specific heat and thermal conductivity for oxide fuel. A
number of correlations are available.

15.2 Solid Mechanics Models

15.2.1 CreepPyC

[./creeppyc]
type = CreepPyC

47

disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
flux = <string >
density = <real >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
stress_free_temperature = <real >

[../]

type CreepPyC

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.
flux Variable name corresponding to the fast neutron flux. Typi-

cally fast neutron flux.
density The initial material density.
thermal expansion Coefficient of thermal expansion.
stress free temperature The stress-free temperature. If not specified, the initial tem-

perature is used.

CreepPyC is used to model the creep behavior of pyrolytic carbon.

15.2.2 CreepSiC

[./creepsic]
type = CreepSiC
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
fast_neutron_flux = <string >

48

k_function = <string >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
stress_free_temperature = <real >

[../]

type CreepSiC

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.
fast neutron flux Variable name corresponding to the fast neutron flux. Typi-

cally fast neutron flux.
k function Function that takes temperature as input and gives the K coef-

ficient as output.
youngs modulus Young’s modulus.
poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.
stress free temperature The stress-free temperature. If not specified, the initial tem-

perature is used.

CreepSiC is used to model the creep behavior of silicon carbide. The relation is

ė
cr

= Ksf. (15.1)

15.2.3 CreepUO2

[./creepuo2]
type = CreepUO2
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
fission_rate = <string >

49

youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
grain_radius = <real > (10e-6)
oxy_to_metal_ratio = <real > (2)
relative_tolerance = <real > (1e-4)
absolute_tolerance = <real > (1e-20)
max_its = <integer > (10)
output_iteration_info = <true or false > (false)
stress_free_temperature = <real >
matpro_youngs_modulus = <true or false > (false)
matpro_poissons_ratio = <true or false > (false)
matpro_thermal_expansion = <true or false > (false)
burnup = <string >

[../]

type CreepUO2

disp x Variable name for displacement variable in x direction. Typ-
ically disp x.

disp y Variable name for displacement variable in y direction. Typ-
ically disp y.

disp z Variable name for displacement variable in z direction. Typ-
ically disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.
fission rate Variable name corresponding to the fission rate. Typically

fission rate.
youngs modulus Young’s modulus.
poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.
grain radius Fuel grain radius.
oxy to metal ratio Oxygen to metal ratio.
relative tolerance Relative convergence tolerance for material model iterations.
absolute tolerance Absolute convergence tolerance for material model itera-

tions.
max its Maximum number of material model convergence iterations.
output iteration info Whether to output material model convergence information.
stress free temperature The stress-free temperature. If not specified, the initial tem-

perature is used.

50

matpro youngs modulus Set to true to use correlations for Young’s modulus from
MATPRO [8].

matpro poissons ratio Set to true to use correlations for Poisson’s modulus from
MATPRO [8].

matpro thermal expansion Set to true to use correlations for coefficient of thermal ex-
pansion from MATPRO [8].

burnup Name of burnup variable. Only required if using MATPRO
correlations. Typically burnup.

The CreepUO2 is used to model the creep behavior of UO2.

15.2.4 Elastic

[./elastic]
type = Elastic
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
stress_free_temperature = <real >

[../]

type Elastic

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.
youngs modulus Young’s modulus.
poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.
stress free temperature The stress-free temperature. If not specified, the initial tem-

perature is used.

51

The Elastic model is a simple hypo-elastic model.

15.2.5 IrradiationGrowthZr4

[./irradiationgrowthzr4]
type = IrradiationGrowthZr4
fast_neutron_fluence = <string >
Ag = <real > (3e-20)
ng = <real > (0.794)

[../]

type IrradiationGrowthZr4

fast neutron fluence Name of fast neutron fluence variable. Typically
fast neutron fluence.

Ag Material constant that depends on the cladding metalurgical state.
ng Material constant that depends on the cladding metalurgical state.

The IrradiationGrowthZr4 model incorporates anisotropic volumetric swelling to track
axial elongation in Zr4 cladding.

15.2.6 PyCIrradiationStrain

[./pycirradiationstrain]
type = PyCIrradiationStrain
fluence = <string >
pyc_type = <string > (buffer)

[../]

type PyCIrradiationrStrain

fluence Variable name corresponding to the fast neutron fluence. Typically
fast neutron fluence.

pyc type One of buffer or dense.

The PyCIrradiationStrain model tracks the irradiation-induced strain in pyrolytic carbon.
The strain is isotropic for the buffer type and differs in the radial and tangential directions for
the dense type.

15.2.7 MechZry

[./mechzry]
type = MechZry
fast_neutron_flux = <string >
fast_neutron_fluence = <string >

52

initial_fast_fluence = <real > (0.0)
cold_work_factor = <real > (0.01)
oxygen_concentration = <real > (0.0)
relative_tolerance = <real > (1e-4)
absolute_tolerance = <real > (1e-20)
max_its = <integer > (10)
output_iteration_info = <bool > (false)
model_irradiation_growth = <bool > (true)
model_primary_creep = <bool > (true)
model_thermal_creep = <bool > (true)
model_irradiation_growth = <bool > (true)
model_thermal_expansion = <bool > (true)
model_elastic_modulus = <bool > (false)
stress_free_temperature = <real >
material_type = < 0 or 1 for SRA or RXA >

[../]

type MechZry

fast neutron flux Variable name corresponding to the fast neutron flux. Typi-
cally fast neutron flux.

fast neutron fluence Name of fast neutron fluence variable. Typically
fast neutron fluence.

initial fast fluence The initial fast neutron fluence.
cold work factor Cold work factor.
oxygen concentration Oxygen concentration in ppm.
relative tolerance Relative convergence tolerance for material model iterations.
absolute tolerance Absolute convergence tolerance for material model itera-

tions.
max its Maximum number of material model convergence iterations.
output iteration info Whether to output material model convergence information.
model irradiation creep Whether to model irradiation-induced creep.
model primary creep Whether to model primary creep.
model thermal creep Whether to model steady state thermal creep.
model irradiation growth Whether to model irradiation growth.
model thermal expansion Whether to use MATPRO model for thermal expansion.
model elastic modulus Whether to calculate temperature-dependent elastic moduli.
stress free temperature The stress-free temperature. If not specified, the initial tem-

perature is used.
material type Cladding material type. 0 for SRA, 1 for RXA.

The MechZry model includes the option to model primary, thermal, and irradiation-induced
creep. It is also possible to turn on irradiation growth. If irradiation growth is turned on, do not

53

include the IrradiationGrowthZr4 model.

15.2.8 RelocationUO2

[./relocationuo2]
type = RelocationUO2
burnup = <string >
diameter = <real >
q = <string >
gap = <real >
burnup_relocation_stop = <real >
relocation_activation1 = <real > (19685.039)
relocation_activation2 = <real > (45931.759)
relocation_activation3 = <real > (32808.399)
axial_axis = <0, 1, or 2 for x, y, or z>

[../]

type RelocationUO2

burnup Name of burnup variable. Typically burnup.
diameter As fabricated cold diameter of pellet in meters.
q Linear heat rate in pellet in W/m.
gap As fabricated cold diametral gap in m.
burnup relocation stop Burnup at which relocation strain stops in FIMA.
relocation activation1 First activation linear power in W/m. The linear power at

which relocation turns on.
relocation activation2 Second activation linear power in W/m. The linear power at

which relocation transitions from the initial regime to the sec-
ondary regime.

relocation activation3 Third activation linear power in W/m. The linear power offset
in the secondary regime.

axial axis Coordinate axis of the axial direction of the fuel stack.

The RelocationUO2 model accounts for cracking and relocation of fuel pellet fragments in
the radial direction. This model is necessary for accurate modeling of LWR fuel.

15.2.9 ThermalIrradiationCreepZr4

[./ thermalirradiationcreepzr4]
type = ThermalIrradiationCreepZr4
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >

54

temp = <string >
a_coeff = <real > (3.14e24)
n_exponent = <real > (5)
activation_energy = <real > (2.7e5)
gas_constant = <real > (8.3143)
fast_neutron_flux = <string >
c0_coef = <real > (9.881e-28)
c1_coef = <real > (0.85)
c2_coef = <real > (1)
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
relative_tolerance = <real > (1e-4)
absolute_tolerance = <real > (1e-20)
max_its = <integer > (10)
output_iteration_info = <true or false > (false)
stress_free_temperature = <real >

[../]

type ThermalIrradiationCreepZr4

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.
a coef The leading coefficient in the thermal creep term.
n exponent The exponent in the thermal creep term.
activation energy The activation energy.
gas constant The universal gas constant.
fast neutron flux Variable name corresponding to the fast neutron flux. Typi-

cally fast neutron flux.
c0 coef The leading coefficient in the irradiation creep term.
c1 exponent The exponent on the irradiation creep fast neutron flux term.
c2 exponent The exponent on the irradiation creep stress term.
youngs modulus Young’s modulus.
poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.

55

relative tolerance Relative convergence tolerance for material model iterations.
absolute tolerance Absolute convergence tolerance for material model iterations.
max its Maximum number of material model convergence iterations.
output iteration info Whether to output material model convergence information.
stress free temperature The stress-free temperature. If not specified, the initial tem-

perature is used.
burnup Name of burnup variable. Typically burnup.

The ThermalIrradiationCreepZr4 is used for Zr4 cladding in LWR simulations. It in-
cludes fits for the temperature, irradiation, and stress effects on cladding creep.

15.2.10 VSwellingUO2

[./vswellinguo2]
type = VSwellingUO2
temp = <string >
burnup = <string >
density = <real >
total_densification = <real > (0.01)
complete_burnup = <real > (5)

[../]

type VSwellingUO2

temp Name of temperature variable. Typically temp.
burnup Name of burnup variable. Typically burnup.
density Initial fuel density.
total densification The densification that will occur given as a fraction of theoretical

density.
complete burnup The burnup at which densification is complete (MWd/kgU).

The VSwellingUO2 model computes a volumetric strain to account for solid and gaseous
swelling and for densification.

15.3 Fission Gas Models

Fission gas production and release modeling plays a vital role in fuel performance analysis.
Fission gas affects swelling, porosity, thermal conductivity, gap conductivity, and rod internal
pressure. The Sifgrs model is recommended.

15.3.1 ForMas

56

[./formas]
type = ForMas
grain_radius = <real > (10e-6)
resolution_rate = <real > (1e-7)
resolution_depth = <real > (1e-8)
bubble_radius = <real > (5e-7)
bubble_shape_factor = <real > (0.287)
surface_tension = <real > (0.626)
fractional_coverage = <real > (0.5)
external_pressure = <real > (10e6)
plenum_pressure = <string >
external_pressure_function = <string >
release_fraction = <real > (0)
fractional_yield = <real > (0.3017)
calibration_factor = <real > (1)

[../]

type ForMas

grain radius Initial fuel grain radius.
resolution rate Resolution rate from intergranular bubbles (1/s).
resolution depth Resolution layer depth.
bubble radius Grain boundary bubble radius.
bubble shape factor Non-spherical bubble shape factor.

surface tension Bubble surface tension (J/m2).
fractional coverage Fractional coverage of grain boundary at saturation.
external pressure Constant external hydrostatic pressure.
plenum pressure The name of the plenum pressure Postprocessor.
external pressure function Function describing the external pressure.
release fraction Fraction of boundary and resolved gas released at satura-

tion.
fractional yield Fractional yield of fission gas atoms per fission.
calibration factor Calibration factor to be multiplied by gas saturation den-

sity.

The ForMas model is maintained but not actively developed. The Sifgrs model is recom-
mended.

15.3.2 Sifgrs

[./sifgrs]
type = Sifgrs
initial_grain_radius = <real > (5e-6)

57

hydrostatic_stress_const = <real > (0.0)
surface_tension = <real > (0.5)
saturation_coverage = <real > (0.5)
hbs_release_burnup = <real > (100)
initial_porosity = <real > (0.05)
density = <real >
solid_swelling_factor = <real > (5.577e-5)
total_densification = <real > (0.01)
end_densification_burnup = <real > (5)
pellet_brittle_zone = <string >
diff_coeff_option <integer >
compute_swelling = <bool > (false)
ath_model = <bool > (false)
gbs_model = <bool > (false)
ramp_model = <bool > (false)
hbs_model = <bool > (false)
file_name = <string >
format = <string > (rows)
rod_ave_lin_power = <string >
axial_power_profile = <string >
grain_radius = <string >
pellet_id = <string >
temp = <string >
fission_rate = <string >
hydrostatic_stress = <string >
burnup = <string >

[../]

type Sifgrs

initial grain radius Initial grain radius.
hydrostatic stress const A constant value for hydrostatic stress. Ignored if

hydrostatic stress is given.

surface tension Bubble surface tension (J/m2).
saturation coverage Fractional grain boundary bubble coverage at saturation.
hbs release burnup Threshold local burnup for gas release from the HBS poros-

ity (MWd/kgU).
initial porosity Initial fuel porosity.
density Initial fuel density.
solid swelling factor Solid swelling coefficient.
total densification The densification that will occur given as a fraction of theo-

retical density.
end densification burnup The burnup at which densification is complete (MWD/kgU).
pellet brittle zone The name of the UserObject that computes the width of the

brittle zone.

58

diff coeff option One of 0 (Turnbull), 1 (Andersson, low burnup), 2 (Anders-
son, high burnup), or 3 (Turnbull modified).

compute swelling Whether to compute fuel swelling.
ath model Whether to compute athermal gas release.
gbs model Whether to compute grain boundary sweeping.
ramp model Whether to include the ramp release model. Requires

file name.
hbs model Whether to include high burnup structure gas release.
file name File describing rod averaged linear power. This power is the

total power, the power from the volumetric fission rate times
the volume of fuel times the energy per fission.

format One of rows or columns.
rod ave lin pow Function describing rod averaged linear power. This power

is the total power, the power from the volumetric fission rate
times the volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.
grain radius Variable name for grain radius.
pellet id Variable name for pellet id. Typically pellet id.
temp Variable name for temperature variable. Typically temp.
fission rate Variable name corresponding to the fission rate. Typically

fission rate.
hydrostatic stress Variable name for hydrostatic stress. Typically

hydrostatic stress.
burnup Name of burnup variable. Typically burnup.

Sifgrs is the recommended fission gas model.

15.4 Mass Diffusion Models

[./ arrheniusdiffusioncoef]
type = ArrheniusDiffusionCoef
d1 = <real > (5.6e-8)
d1_function = <string >
d1_function_variable = <string >
d2 = <real > (5.2e-4)
q1 = <real > (2.09e5)
q2 = <real > (3.62e5)
gas_constant = <real > (8.3143)
temp = <string >

[../]

59

type ArrheniusDiffusionCoef

d1 First coefficient (m2/2).
d1 function Function to be multiplied by d1.
d1 function variable Variable to be used when evaluating d1 function. If not given,

time will be used.
d2 Second coefficient (m2/2).
q1 First activation energy (J/mol).
q2 Second activation energy (J/mol).
gas constant Universal gas constant (J/mol/K).
temp Name of temperature variable. Typically temp.

This material computes a two-term Arrhenius diffusion coefficient of the form

d = d1exp
✓
�q1

RT

◆
+d2exp

✓
�q2

RT

◆
. (15.2)

15.5 Other Models

15.5.1 Density

[./density]
type = Density
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
density = <real >

[../]

type Density

disp x Variable name for displacement variable in x direction. Typically disp x.
disp y Variable name for displacement variable in y direction. Typically disp y.
disp z Variable name for displacement variable in z direction. Typically disp z for 3D

and disp y for axisymmetric models.
disp r Variable name for displacement variable in radial direction for axisymmetric or

spherically symmetric cases. Typically disp x.
density Density.

The Density model creates a material property named density. If coupled to displacement
variables, the model adjusts density based on deformation.

60

16 Postprocessors

MOOSE Postprocessors compute a single scalar value at each timestep. These can be min-
imums, maximums, averages, volumes, or any other scalar quantity. One example of the use
of Postprocessors in BISON is computing the gas volume of an LWR rod. The gas volume
changes timestep to timestep, but since it is a single scalar quantity, a Postprocessor computes
this value.

[Postprocessors]
[./name]

type = <postprocessor type >
block = <string list >
boundary = <string list >
output = <string >
...

[../]
[]

type Type of postprocessor
block List of blocks. Either block numbers or names.
boundary List of boundaries (side sets). Either boundary numbers or names.
output The options are: none, screen, file, both, auto (no output, output to screen only,

output to files only, output both to screen and files, same as both but no warnings
if output options conflict).

All Postprocessors act on either boundaries or blocks. If no block or boundary is specified,
the Postprocessor will act on the entire model.

16.1 SideAverageValue

[./sideaveragevalue}
type = SideAverageValue
variable = <string >

[../]

type SideAverageValue

variable The variable this Postprocessor acts on.

61

SideAverageValue computes the area- or volume-weighted average of the named variable.
It may be used, for example, to calculate the average temperature over a side set.

16.2 InternalVolume

[./internalvolume}
type = InternalVolume
scale_factor = <real > (1)
addition = <addition > (0)

[../]

type InternalVolume

scale factor Scale factor to be applied to the internal volume calculation.
addition Number to be added to internal volume calculation. This addition is not

scaled.

InternalVolume computes the volume of an enclosed space. The entire boundary of the
enclosed space must be represented by the given side set. If the given side set points outward,
InternalVolume will report a negative volume.

16.3 Reporter

[./reporter]
type = Reporter
default = <real > (0)

[../]

type Reporter

default Default or initial value of the Postprocessor.

Reporter is a unique Postprocessor in that it does not calculate anything at all. It is simply
a scalar value that can be set and used by other MOOSE objects. It is commonly used to report
scalar quantities computed by boundary conditions, kernels, and other objects.

16.4 TimestepSize

[./dt]
type = TimestepSize

[../]

62

type TimestepSize

TimestepSize reports the timestep size.

16.5 NumNonlinearIterations

[./numnonlineariters]
type = NumNonlinearIterations

[../]

type NumNonlinearIterations

NumNonlinearIterations reports the number of nonlinear iterations in the just-completed
solve.

16.6 PlotFunction

[./plotfunction]
type = PlotFunction
function = <string >
scale_factor = <real > (1)

[../]

type PlotFunction

function The function to evaluate.
scale factor Scale factor to be applied to the function value.

PlotFunction gives the value of the supplied function at the current time, optionally scaled
with scale factor.

16.7 ElementIntegralPower

[./elementintegralpower]
type = ElementIntegralPower
fission_rate = <string >
energy_per_fission = <real > (3.28451e-11)

[../]

type ElementIntegralPower

fission rate Variable name corresponding to the fission rate. Typically
fission rate.

63

energy per fission The energy released per fission in J/fission.

ElementIntegralPower computes the power in the supplied block given the fission rate
variable and energy per fission.

16.8 SideFluxIntegral

[./sidefluxintegral]
type = SideFluxIntegral
variable = <string >
diffusivity = <string >

[../]

type SideFluxIntegral

variable Variable to be used in the flux calculation.
diffusivity The diffusivity material property to be used in the calculation.

SideFluxIntegral computes the integral of the flux over the given boundary.

64

17 Executioner

The Executioner block describes how the simulation will be executed. It includes commands
to control the solver behavior and time stepping.

[Executioner]
type = <string >
solve_type = <string >
print_linear_residuals = <bool > (false)
petsc_options = <string list >
petsc_options_iname = <string list >
petsc_options_value = <string list >
line_search = <string >
l_max_its = <integer >
l_tol = <real >
nl_max_its = <integer >
nl_rel_tol = <real >
nl_abs_tol = <real >
start_time = <real >
dt = <real >
end_time = <real >
num_steps = <integer >
dtmax = <real >
dtmin = <real >
optimal_iterations = <integer >
iteration_window = <integer > (0.2* optimal_iterations)
linear_iteration_ratio = <integer > (25)

type Several available. Typically AdaptiveTransient.
solve type One of PJFNK (preconditioned JFNK), JFNK (JFNK),

NEWTON (Newton), or SolveFD (Jacobian computed by finite
difference–serial only, slow).

print linear residuals Whether to print linear residuals to the screen.
petsc options PETSc flags.
petsc options iname Names of PETSc name/value pairs.
petsc options value Values of PETSc name/value pairs.
line search Line search type. Typically none.
l max its Maximum number of linear iterations per solve.
l tol Linear solve tolerance.
nl max its Maximum number of nonlinear iterations per solve.

65

nl rel tol Nonlinear relative tolerance.
nl rel abs Nonlinear absolute tolerance.
start time The start time of the analysis.
dt The initial timestep size.
end time The end time of the analysis.
num steps The maximum number of time steps.
dtmax The maximum allowed timestep size. Used with

AdaptiveTransient.
dtmin The minimum allowed timestep size. Used with

AdaptiveTransient.
optimal iterations The target number of nonlinear iterations for adaptive timestep-

ping. Used with AdaptiveTransient.
iteration window The size of the nonlinear iteration window for adaptive

timestepping. Used with AdaptiveTransient.
linear iteration ratio The ratio of linear to nonlinear iterations to determine target

linear iterations and window for adaptive timestepping.

Many Executioner types exist. For each type, specific options are available. To see the
complete set of possibilities, follow the Input Syntax link on the BISON wiki page.

Similarly, many PETSc options exist. Please see the online PETSc documentation for details.
Given the many possibilities in the Executioner block, it may be helpful to review examples

in the BISON tests, examples, and assessment directories.

66

18 Output

[Output]
file_base = <string > (mesh file base name + ‘_out ’)
interval = <integer > (1)
exodus = <bool > (false)
max_pps_rows_screen = <integer > (15)
postprocessor_csv = <bool > (false)
output_initial = <bool > (false)
[../]

file base Base file name for output files.
interval The interval at which solutions are written to the output files.
exodus Specifies that you would like ExodusII solution files. Typically set

to true.
max pps rows screen The maximum number of postprocessor values displayed on screen

during a timestep (set to 0 for unlimited).
postprocessor csv Specifies whether you would like a csv file containing

Postprocessor values.
output initial Specifies whether you would like the initial state of the model writ-

ten to the output file. Typically set to true.

The Output block lists parameters that control the frequency and type of results files pro-
duced.

67

19 Dampers

Dampers are used to decrease the attempted change to the solution with each nonlinear step.
This can be useful in preventing the solver from changing the solution dramatically from one
step to the next. This may prevent, for example, the solver from attempting to evaluate negative
temperatures.

The MaxIncrement damper is commonly used.

19.1 MaxIncrement

[Dampers]
[./maxincrement]

type = MaxIncrement
max_increment = <real >
variable = <string >

[../]
[]

type MaxIncrement
max increment The maximum change in solution variable allowed from one nonlinear step

to the next.
variable Variable that will not be allowed to change beyond max increment from

nonlinear step to nonlinear step.

The MaxIncrement damper limits the change of a variable from one nonlinear step to the
next.

68

20 UserObjects

20.1 PelletBrittleZone

[./pelletbrittlezone]
type = PelletBrittleZone
pellet_id = <string >
temp = <string >
pellet_radius = <real >
a_lower = <real >
a_upper = <real >
number_pellets = <integer >

[../]

type PelletBrittleZone

pellet id Variable name for pellet id. Typically pellet id.
temp Name of temperature variable. Typically temp.
pellet radius The outer radius of the fuel.
a lower The lower axial coordinate of the fuel stack.
a upper The upper axial coordinate of the fuel stack.
number pellets Number of fuel pellets.

PelletBrittleZone computes the brittle zone width on a per-pellet basis.

69

21 Timestepping

The time steps taken by BISON can be specified directly by providing either a single fixed
time step to take throughout the analysis, or by providing the time step as a function of time.
Alternatively, an adaptive timestepping algorithm can be used to modify the time step based
on the difficulty of the iterative solution, as quantified by the numbers of linear and nonlinear
iterations required to drive the residual below the tolerance required for convergence.

All of these types of timestepping can be obtained by using the AdaptiveTransient type
of executioner. The parameters used in this executioner to obtain these different types of time
stepping are described below.

21.1 Direct Time Step Control with Constant Time Step

The most basic way to control the time steps taken by BISON is to use the AdaptiveTransient
executioner with options that instruct it to take a single, fixed time step over the duration of the
analysis. To take time steps in this way, simply specify the time step to be taken using the dt
parameter.

While using a constant time step, if the solver fails to obtain a converged solution for a given
step, the executioner cuts back the step size and attempts to advance the time from the previous
step using a smaller time step. The time step is cut back by multiplying the time step by the
factor specified by the user through the cutback factor parameter.

If the solution with the cut-back time step is still un-successful, it is repeatedly cut back until a
successful solution is obtained. The user can optionally specify a minimum time step through the
dtmin parameter. If the time step must be cut back below the minimum size without obtaining
a solution, BISON exits with an error.

If the time step has been cut back to obtain a solution, BISON uses that cut-back time step
in the next step. If that solution is successful, BISON attempts to increase the time step by
multiplying it by the value specified by the growth factor parameter. This is done repeatedly
until the time step has grown back to the original value specified in the dt parameter.

21.2 Direct Time Step Control with Varying Time Step Size

BISON can optionally take time steps that are specified by the user, but which can vary over
time. This is accomplished by providing a set of pairs of times and time steps instead of with
a single fixed time step. A vector of time steps is provided using the time dt parameter. An
accompanying vector of corresponding times is specified using the time t parameter. These
two vectors are used to form a time step vs. time function. The time step for a given step is
computed by linearly interpolating between the pairs of values provided in the vectors.

70

The same procedure that is used with a fixed time step is used to cut back the time step from
the user-specified value if a failed solution occurs. The time step is grown until it reaches to the
value specified by the time-dependent function in the same way that is done with a fixed time
step.

21.3 Adaptive Time Stepping

The two methods for user-specified time stepping described above can be used to cut the time
step back if a solution fails. While this technique can be helpful to get past difficult parts of the
time history, it can be much more efficient to adapt the time step based on the difficulty of the
solution.

The AdaptiveTransient executioner provides an option to grow or shrink the time step
based on the number of iterations taken to obtain a converged solution in the last converged step.
The adaptive time stepping option is activated by setting a value for the optimal iterations
parameter. This parameter is the number of nonlinear iterations per time step that provides
optimal solution efficiency. If more iterations than that are required, the time step may be too
large, resulting in undue solution difficulty, while if fewer iterations are required, it may be
possible to take larger time steps to obtain a solution more quickly.

A second parameter, iteration window, is used to control the size of the region in which
the time step is held constant. As shown in Figure 21.1, if the number of nonlinear iterations
for convergence is lower than (optimal iterations�iteration window), the time step is
increased, while if more than (optimal iterations+iteration window), iterations are re-
quired, the time step is decreased. The iteration window parameter is optional. If it is not
specified, it defaults to 1/5 the value specified for optimal iterations.

The decision on whether to grow or shrink the time step is based both on the number of non-
linear iterations and the number of linear iterations. The parameters mentioned above are used to
control the optimal iterations and window for nonlinear iterations. The same criterion is applied
to the linear iterations. Another parameter, linear iteration ratio, which defaults to 25, is
used to control the optimal iterations and window for the linear iterations. These are calculated
by multiplying linear iteration ratio by optimal iterations and iteration window,
respectively.

To grow the time step, the growth criterion must be met for both the linear iterations and non-
linear iterations. If the time step shrinkage criterion is reached for either the linear or nonlinear
iterations, the time step is decreased. To control the time step size only based on the number of
nonlinear iterations, set linear iteration ratio to a large number.

If the time step is to be increased or decreased, that is done using the factors specified with
the growth factor and cutback factor, respectively. If a solution fails to converge when
adaptive time stepping is active, a new attempt is made using a smaller time step in the same
manner as with the fixed time step methods. The maximum and minimum time steps can be
optionally specified using the dtmax and dtmin parameters, respectively.

71

0 iterations

increase time step decrease time stepmaintain time step

optim
al

w
indow

w
indow

Figure 21.1: Criteria used to determine adaptive time step size

72

22 Mesh Script

22.1 Overview

To ease generation of LWR fuel meshes, a mesh script is available. The script relies on CU-
BIT [6].

22.1.1 Run the Main Script

The mesh script is at bison/tools/UO2/. The main script (mesh script.sh) is run from the shell
command line. This script invokes the Python meshing script (mesh script.py) and passes it an
input file named mesh script input.py by default.

You invoke the script as:

> ./mesh_script.sh [-c -d -l] [-p path to mesh_script.py] [-i
mesh_script_input.py]

The -c flag will cause the script to check whether CUBIT can be loaded. The -d flag results in
the deletion of the CUBIT journal file when the script completes. The -l flag will generate a
log file (otherwise messages will go to the terminal). The -p flag, which is rarely used, tells the
script where to find the mesh script.py file. Finally, you may supply any mesh script input file
with the -i flag.

The main script generates an exodus file, with QUAD elements in 2D and HEX elements in
3D.

22.1.2 Mesh Architecture

Figure 22.1 provides an overview of the architecture of a fuel rod. A fuel rod is composed of
a clad, a stack of pellets, and optionally a liner extruded on the inner surface of the clad. Each
component of this architecture corresponds to a different block in the BISON input and mesh
files. In the mesh input file, you refer to each block through a specific dictionary to create it. In
the Exodus file, blocks are numbered, and a name is provided for each of them.

The pellets contained in a fuel rod can have different geometries. There is a block for each
geometry, in the input file as well as in the Exodus file.

22.2 Input File Review

22.2.1 Pellet Type

This dictionary encapsulates a pellet geometry and the quantity of the corresponding pellets. To
refer to a parameter, you have to know its key (the quoted string between brackets).

73

!

CLAD%
INPUT!FILE!

Dictionary:!clad!

Creation:!automatic!

!

EXODUS!FILE!

Type:!block!

Name:!“clad”!

Number:!1!

LINER%
INPUT!FILE!

Dictionary:!clad!

Creation:!clad[‘with_liner’]!=!True!

!

EXODUS!FILE!

Type:!block!

Name:!“liner”!

Number:!2!

PELLET%TYPE%1%
INPUT!FILE!

Dictionary:!pellet_type_1!

Creation:!in!list!“pellets”!

!

EXODUS!FILE!

Type:!block!

Name:!“pellet_type_1”!

Number:!3!

PELLET%TYPE%#N%
INPUT!FILE!

Dictionary:!pellet_type_N!

Creation:!in!list!“pellets”!

!

EXODUS!FILE!

Type:!block!

Name:!“pellet_type_N”!

Number:!N+2!

Figure 22.1: Overview of the architecture of a fuel rod.

74

Pellet Type 1
Pellet1= {}
Pellet1[’type’] = ’discrete’
Pellet1[’quantity’] = 5
Pellet1[’mesh_density’] = ’medium’
Pellet1[’outer_radius’] = 0.0041
Pellet1[’inner_radius’] = 0
Pellet1[’height’] = 2*5.93e-3
Pellet1[’dish_spherical_radius’] = 1.01542e-2
Pellet1[’dish_depth’] = 3e-4
Pellet1[’chamfer_width’] = 5.0e-4
Pellet1[’chamfer_height’] = 1.6e-4

• ’type’ Type string. Must be ’discrete’ or ’smeared’. From a geometric point of view, a
smeared pellet is a rectangle. Two consecutive smeared pellets have their top and bottom
surfaces merged.

• ’quantity’ Type int. Number of pellets created with this geometry.

• ’mesh_density’ Type string.

• ’outer_radius’ Type float. Outer radius of the pellet.

• ’inner_radius’ Type float. Inner radius of the pellet.

• ’height’ Type float. Pellet height.

• ’dish_spherical_radius’ Type float. Spherical radius of the dishing. Needed only if
type is ’discrete’.

• ’dish_depth’ Type float. Depth of the dishing. Needed only if type is ’discrete’.

• ’chamfer_width’ Type float. Radial chamfer length in RZ coordinates. Must be zero for
a non-chamfered pellet. Needed only if type is ’discrete’.

• ’chamfer_height’ Type float. Axial chamfer length in RZ coordinates. Must be zero
for a non-chamfered pellet. Needed only if type is ’discrete’. If either chamfer_width or
chamfer_height is zero, both must be zero.

22.2.2 Pellet Collection

pellets = [Pellet1, Pellet2, Pellet3]

This is a list of the pellets that make up the pellet stack. The geometries are ordered from the
bottom to the top of the stack. A pellet type block must be present in this list to be created.

75

22.2.3 Stack Options

Stack options
pellet_stack = {}
pellet_stack[’merge_pellets’] = True
pellet_stack[’higher_order’] = False
pellet_stack[’angle’] = 0

• ’merge_pellets’ Type string. Control type of merging between pellets. Options are:
’yes’, ’no’, ’point’, ’surface’. See Table 22.1 for a complete description. Note that any

other string results in pellets that are not merged.

• ’higher_order’ Type boolean. Control order of mesh elements. See Table 22.2

• ’angle’ Type int. Between 0 and 360. Angle of revolution of the pellet stack. If 0,
creates a 2D fuel rod. If greater than 0, creates a 3D fuel rod.

2D discrete 2D smeared 3D discrete

’yes’ vertex curve curve
’no’ not merged not merged not merged

’point’ vertex vertex curve
’surface’ not merged curve not merged

Table 22.1: Merging control. ’Vertex’ means that the pellets are merged at their common vertex
which is the closest from the centerline. In 2D, ’curve’ means that the pellets are
merged at their common curve. In 3D, ’curve’ means that the pellets are merged at
the curve generated by the corresponding merged vertex in 2D rz geometry.

False True

2D QUAD4 QUAD8
3D HEX8 HEX20

Table 22.2: Order of generated elements

22.2.4 Clad

clad = {}
clad[’mesh_density’] = ’medium’
clad[’gap_width’] = 8e-5
clad[’bot_gap_height’] = 1e-3
clad[’clad_thickness’] = 5.6e-4
clad[’top_bot_clad_height’] = 2.24e-3

76

clad[’plenum_fuel_ratio’] = 0.045
clad[’with_liner’] = False
clad[’liner_width’] = 5e-5

• ’mesh_density’ Type string. CAUTION: the mesh density of the clad is related to the
mesh density of the pellets which use the same mesh dictionary as the clad.

• ’gap_width’ Type float. Radial width of the gap between the fuel and the clad (or the
liner).

• ’bot_gap_height’ Type float. Axial height between fuel and top/bottom of the gap.

• ’clad_thickness’ Type float. Thickness of the sleeve of the clad.

• ’top_bot_clad_height’ Type float. Height of the bottom and of the top of the clad.

• ’plenum_fuel_ratio’ Type float. Ratio of the free volume by the volume of the fuel.

• ’with_liner’ Type boolean. Whether to include a liner.

• ’liner_width’ Type float. Liner width.

22.2.5 Meshing Parameters

Parameters of mesh density ’coarse’
coarse = {}
coarse[’pellet_r_interval’] = 6
coarse[’pellet_z_interval’] = 2
coarse[’pellet_dish_interval’] = 3
coarse[’pellet_flat_top_interval’] = 2
coarse[’pellet_chamfer_interval’] = 1
coarse[’pellet_slices_interval’] = 4
coarse[’clad_radial_interval’] = 3
coarse[’clad_sleeve_scale_factor’] = 4
coarse[’cap_radial_interval’] = 6
coarse[’cap_vertical_interval’] = 3
coarse[’pellet_angular_interval’] = 6
coarse[’clad_angular_interval’] =12

The user defines a dictionary containing the mesh parameters. The user can specify the name
of this dictionary as long as the name is consistent with the names defined in the pellet type
blocks for mesh_density. pellet_r_interval and pellet_z_interval are used only with
smeared pellet meshes. Figure 22.2 explains other parameters.

The angular intervals are for 3D geometries and correspond to the created arcs of circle. Note
that to have a nice mesh, you may want to have the same number of interval on the diameter of
the fuel rod and on this arc of circle.

77

Figure 22.2: Mesh parameters

!

A:!pellet_dish_interval
B:!pellet_flat_top_interval!
C:!pellet_chamfer_interval!
D:!pellet_slices_interval
!

D!

C!

A! B!

(a) Pellet. Dashed lines represent RZ axes.

!

A:!cap_radial_interval
B:!clad_radial_interval!
C:!cap_vertical_interval!
D:!Number!elements!in!fuel!stack!*!clad_sleeve_scale_factor!

A! B!

C!

D!

(b) Clad. Represented in RZ.

78

22.3 Output File Review

Figure 22.1 summarizes names and number of the blocks in the exodus file. Figure 22.3 sum-
marizes the numbering for the sidesets and nodesets.

Blocks'
Block'1:'Cladding'
Block'2:'Liner'or'first''

'pellet'type'
Block'n:'pellet_type#'

1'

Sideset'7:'Cladding'Interior'
Sideset'8:'All'pellet'exteriors'
Sideset'9:'Union'of'7'&'8'
Sideset'10:'Outer'Radial'Surface'of'Pellets'
Sideset'11:'Top'Pellet'Top'
Sideset'12:'Centerline'(for'RZ)'
Sideset'13:'Pellet'interior'

2'

3'

4'

5'

6'

20'

21'
22'

23'

Sidesets'

1001'

NS'1004:'All'central'nodesets'
NS'1005:'All'central'pellet'nodesets'
NS'2000:'BoRom'Center'Meso'
NS'2001:'BoRom'Outer'Meso'
NS'2002:'Middle'Center'Meso'
NS'2003:'Middle'Outer'Meso'
NS'3000:'Top'Center'Pellet'
NS'3002:'(x=<max>,'y=0,'z=*)'

1003'

1020'

1021'
1022'

1023'

Nodesets'

3001'

Figure 22.3: Sidesets, nodesets and blocks ids in the exodus file

22.4 Things to Know

22.4.1 Main Script

The main script is written in python v2.5. It is organized in classes: Pellet, PelletStack, Clad,
Liner and FuelRod. The link between the input file and the main is assured by three functions.
A first function is charged to pick read the input file. A second function checks that the syntax
of the input file makes sense for the main script. The third function creates the mesh based on
the input file.

22.4.2 Error Messages

AttributeError Caused by a missing class in the input file.

79

KeyError Often is caused by a wrong key in the input file. The main script should check that
the keys entered in the input file are valid and specify which key is not valid if it occurs.

Other errors should be accompanied by a descriptive message. Contact the developers if the
error message is not helpful.

80

Bibliography

[1] R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann,
D. Andrs, and R. C. Martineau. Multidimensional multiphysics simulation of nuclear fuel
behavior. J. Nuclear Materials, 423:149–163, 2012.

[2] J. D. Hales, R. L. Williamson, S. R. Novascone, D. M. Perez, B. W. Spencer, and G. Pastore.
Multidimensional multiphysics simulation of TRISO particle fuel. J. Nuclear Materials,
443:531–543, 2013.

[3] Pavel Medvedev. Fuel performance modeling results for representative FCRD irradiation
experiments: Projected deformation in the annular AFC-3A U-10Zr fuel pins and compari-
son to alternative designs. Technical Report INL/EXT-12-27183 Revision 1, Idaho National
Laboratory, 2012.

[4] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandié. MOOSE: A parallel computa-
tional framework for coupled systems of nonlinear equations. Nucl. Eng. Design, 239:1768–
1778, 2009.

[5] L. Schoof and V. Yarberry. EXODUS II: A finite element data model. Technical Report
SAND92-2137, Sandia National Laboratories, September 1996.

[6] Sandia National Laboratories. CUBIT: Geometry and mesh generation toolkit.
http://cubit.sandia.gov, 2008.

[7] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of ap-
proaches and applications. J. Comput. Phys., 193(2):357–397, 2004.

[8] C. M. Allison, G. A. Berna, R. Chambers, E. W. Coryell, K. L. Davis, D. L. Hagrman, D. T.
Hagrman, N. L. Hampton, J. K. Hohorst, R. E. Mason, M. L. McComas, K. A. McNeil,
R. L. Miller, C. S. Olsen, G. A. Reymann, and L. J. Siefken. SCDAP/RELAP5/MOD3.1
code manual, volume IV: MATPRO–A library of materials properties for light-water-reactor
accident analysis. Technical Report NUREG/CR-6150, EGG-2720, Idaho National Engi-
neering Laboratory, 1993.

81

