An Overview of NEAMS

Prepared for NEAMS Workbench Collaborators

Bradley T. Rearden, Ph.D.
Leader, NEAMS Integration Product Line

November 2017
Nuclear Energy Advanced Modeling and Simulation (NEAMS)

The NEAMS Mission: provide leading-edge computational tools, currently not available to industry, for accelerating early-stage development of advanced reactor concepts and promoting innovative solutions to important nuclear industry problems; these advanced M&S capabilities will –

- Enable transformative scientific discovery and insights otherwise not attainable or affordable
- Solve problems identified as significant by industry, and consequently expand validation, application, and long-term utility of these advanced tools
- Enhance opportunity for industry to commercialize advanced concepts
- Allow industry to implement innovations that improve the economics of both existing and future nuclear power plants
Develop, apply, deploy, and support a predictive modeling and simulation toolkit for the design and analysis of current and future nuclear energy systems using computing architectures from laptops to leadership class facilities.
Empirical models can accurately interpolate between data, but cannot accurately extrapolate outside of test bounds.

Goal: Develop improved, mechanistic, and *predictive* models for fuel performance using hierarchical, multiscale modeling - applied to existing, advanced (including accident tolerant) and used fuel.

- **Atomistic simulations**
 - Identify important mechanisms
 - Determine material parameter values
 - Predict microstructure evolution
 - Determine effect of evolution on material properties

- **Meso-scale models**
 - Degrees of freedom, operating conditions
 - Mesoscale-informed materials models

- **Engineering scale fuel performance**
 - Predict fuel performance and failure probability

NEAMS - Fuels Product Line (FPL)
NEAMS - Reactors Product Line (RPL)

RPL Focus:
- **System Analysis Module (SAM)**
- **Simulation-based High-fidelity Advanced Reactor Prototyping (SHARP)**
 - Pin-by-pin neutronics, T/H, CFD and CSM modules
 - Capabilities to integrate these modules for multi-physics simulations
 - Primarily targets leadership class computing platforms
 - A range of reduced-order models/methods are also being pursued for more common computing platforms

SHARP is comprised of several physical modeling tools and capability to integrate these tools for multi-physics analyses
- PROTEUS/MC2-3/PERSENT for neutronics
- Nek5000 for CFD and T/H
- Diablo for structural mechanics
- SIGMA interface for multi-physics coupling
NEAMS - Integration Product Line (IPL)

- NEAMS FPL and RPL provide many advanced tools, but they often require large computational resources, can be difficult to install, and require expert knowledge to operate.
- **Goal:** Respond to needs of design and analysis communities by integrating robust multi-physics capabilities and current production tools in easy-to-use versioned deployments that enable end users to apply high-fidelity simulations to inform lower-order models for the design, analysis, and licensing of advanced nuclear systems.

Desired attributes:
- Convenient access to high-fidelity simulations to inform lower-order models
- Common user interface
- Simplified common input to many codes
- Visualization
- Deployment
- Quality assurance
- Verification and validation
- Uncertainty quantification
- Application to design systems and recognized benchmarks
The NEAMS Workbench

- Integrate current production tools with advanced tools under an integrated user interface and workflow manager.
- Leverage modern user interface from SCALE, which is co-sponsored by NRC.
- Leverage templating/input expansion engine from UNF-ST&DARDS and SCALE so that engineering parameters can be expanded to specific input for analysis with varying levels of fidelity in several codes.
- Desire to integrate many tools for many types of systems and demonstrate use of high-fidelity simulations to inform lower order models.

Integrating Production Tools with Advanced Tools

- **User Interface:** Input Generation, Job Launch, Output Review, Visualization.
- **System Templates and Workflow Manager:**
 - Cross Section Preparation
 - Neutronics
 - Depletion / Source Terms
 - Thermal Hydraulics / Plant Systems
 - Fuel Performance
 - Structural Analysis
 - Uncertainty Quantification

Workflow Manager Guides Physics and Data Exchanges

- User Selects Desired Fidelity of Physics
- Production Tools
 - NEAMS
 - Other
 - CASL
- Other Production Tools
 - NEAMS Workbench
 - CASL
 - Other
NEAMS – Workbench User Interface

Snapshot of Fulcrum (from SCALE)

- Text Input Preferred by Expert Users with Highlighting and Error Detection
- Optional Component Input Preferred by Novice or Occasional Users
- Data Visualization
- Geometry Visualization
- Mesh Results Overlay
Templated Common Input – Use with Many Codes

Engineering-style problem specific input
(type of system, materials, dimensions, timesteps, etc)

Database of supported system configurations
• Known systems and customizable features
• Input requirements and options for each code
• Code and problem specific information (mesh geometry, etc.)

Template Engine Expansion

Input for Code A

Input for Code B

Input for Code C

Similar to CASL VERA-IN concept; Leverages Template Engine used for UNF-STD&DARDS and SCALE
Workbench Integration of Legacy Codes: Advanced Reactor Codes (ARC)

- ARC suite of codes developed at ANL with >30 years of experience:
 - Highly efficient
 - Good accuracy (validated)
- Different codes use:
 - Similar design information
 - Different input logic
- Scripts were developed by users to assist with input generation
 - Difficult for new users to get started
 - Limited user community
Convenient input structure based on MCNP logic:
- Well known logic
- Very flexible and compatible with a wide range of other codes (PROTEUS, MCNP, etc.)

Developed in close collaboration with:
- ARC code system users
- Code developers

Challenges:
- Keep input simple/attractive while compatible with deterministic codes’ specific options
- Interpret complex models and translate for lower fidelity code inputs

Workflow Manager
- Pre-processing:
 - Atom density calculation
 - Thermal expansion
- Translation into codes’ input language
- Runtime environment

ARC Code Inputs
- DIF3D
- REBUS
- PERNET
- MCC3
Workbench Integration of Modern Codes: MOOSE/BISON

- MOOSE applications easily enabled under Workbench with uniform input standards available through MOOSE
- Runtime updated to execute BISON
- MOOSE’s input module updated to generate files needed by Workbench, even for new applications even when generated by external teams
Ongoing and Near-Term Code Integration Plans for the NEAMS Workbench

<table>
<thead>
<tr>
<th>Tool</th>
<th>Application</th>
<th>Production Tool</th>
<th>NEAMS Tool</th>
<th>Integration Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>BISON</td>
<td>Fuel performance</td>
<td></td>
<td>x</td>
<td>ORNL</td>
</tr>
<tr>
<td>MOOSE</td>
<td>General purpose multiphysics framework</td>
<td></td>
<td>x</td>
<td>ORNL/INL</td>
</tr>
<tr>
<td>Warthog</td>
<td>Multiphysics neutronics and fuel performance</td>
<td></td>
<td>x</td>
<td>ORNL</td>
</tr>
<tr>
<td>ARC</td>
<td>Fast reactor analysis</td>
<td>x</td>
<td>x</td>
<td>ANL</td>
</tr>
<tr>
<td>SCALE</td>
<td>Widely-used multipurpose neutronics and shielding analysis</td>
<td>x</td>
<td>x</td>
<td>ORNL</td>
</tr>
<tr>
<td>Dakota</td>
<td>Uncertainty quantification and model optimization</td>
<td>x</td>
<td>x</td>
<td>SNL/ORNL</td>
</tr>
<tr>
<td>VisIt</td>
<td>Mesh Visualization</td>
<td>x</td>
<td>x</td>
<td>LBNL</td>
</tr>
<tr>
<td>PROTEUS</td>
<td>Three-dimensional unstructured grid finite element neutron transport solver</td>
<td></td>
<td>x</td>
<td>RPI</td>
</tr>
<tr>
<td>MCNP</td>
<td>Widely-used Monte Carlo radiation transport code</td>
<td></td>
<td>x</td>
<td>RPI</td>
</tr>
</tbody>
</table>