RC-5 Experimental Validation for High Temperature Gas Reactor Simulations &
RC-6: Fluoride Salt Cooled High Temperature Reactors
RC-5 Experimental Validation of High Temperature Gas Reactor Simulations

• FY20: Two scenarios of interest to core designers and safety analysts involve disruptions of the nominal helium flow rate and transition to either the Pressurized or Depressurized Conduction Cooldown (PCC/DCC) events. This work scope seeks the evaluation of degraded or asymmetric RCCS performance and a plenum-to-plenum natural circulation characterization. We are seeking proposals including scope to:
 » Characterize impact of degraded/ asymmetric operation on localized vessel and concrete temperatures
 » Assess impact of slow, medium, and fast blowdown
 » Assess natural convection regime due to break location
 » Experimentally characterize low-velocity (natural circulation) plenum-to-plenum gas flow at prototypical conditions.

Federal POC – Diana Li: Diana.Li@nuclear.energy.gov
National Technical Director – Gerhard Strydom: Gerhard.Strydom@inl.gov
RC-5 Experimental Validation of High Temperature Gas Reactor Simulations

• Requirements:
 – A literature review of previous experimental work performed and the HTGR community V&V needs, specifically for CFD codes, would be expected to leverage previous recommendations and lessons-learned.
 – All experiments must be performed to NQA-1 standards.
 – Data, experiments, and calculations shall be submitted to the Idaho National Laboratory’s NGNP Data Management and Analysis System (NDMAS).

• Recommendations:
 – Principal Investigators are encouraged to consult with US-based HTGR vendors (Framatome, X-Energy, etc.) to refine the experiment design and test matrix.
 – General Atomics 350 MWt MHTGR should be used as basis for scaling experimental facility.
RC-6: Fluoride Salt Cooled High Temperature Reactors

• **RC-6.1: Optimized fluoride salt pipe joints for Fluoride Salt cooled High Temperature Reactors**

 Optimized fluoride salt pipe joints are sought that:
 – Are suitable for both large and small pipes,
 – can be repeatedly joined and disconnected,
 – can be tested prior to filling with salt,
 – function when subjected to repeated thermal cycling,
 – do not require internal pressure for sealing, and
 – are tolerant of common engineering tolerances (roughness and alignment) of mating surfaces.

Federal POC – Diana Li: Diana.Li@nuclear.energy.gov

Technical POC – David Holcomb: holcombde@ornl.gov
• **RC 6.2 Pump scaling technology for Fluoride Salt cooled High Temperature Reactors**

 Development and demonstration of salt pump component technologies (seals and bearings) are requested. The components should:
 - Be scalable from laboratory to industrial scale,
 - Be compatible with fluoride salts
 - Prevent contamination of salt
 - Minimize radionuclide release

Federal POC – Diana Li: Diana.Li@nuclear.energy.gov

Technical POC – David Holcomb: holcombde@ornl.gov