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SUMMARY 

 

 

The objective of the project was to develop a 3-D advanced coarse mesh transport (COMET) method 

(tool) for steady-state and transient analyses in advanced VHTR/NGNP reactors. The project has led to a 

coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. 

 

Current advancements in reactor core design are pushing VHTR/NGNP reactors toward greater core and 

fuel heterogeneity for the purpose of pursuing higher burn-ups, efficiently transmuting used fuel, 

maximizing energy production and improving plant economics and safety. As a result, an accurate and 

efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly 

desirable for predicting the neutronics performance of the VHTR/NGNP reactors. The primary objective 

of the project was to advance the state-of-the-art for reactor analysis. The computational tool (COMET-

Hex) has been developed in hexagonal geometry as an extension to an existing tool (COMET) for light 

and heavy water reactor analysis (in Cartesian geometry). The new method is based solely on transport 

theory without (spatial) homogenization in complicated 3-D geometries including control material. In 

addition to the hexagonal geometry extension, three additional capabilities have been developed 

concurrently by collaborators to increase the versatility of the code as an advanced and robust core 

simulator for VHTR/NGNP reactors.  First, a depletion method within the core simulator has been 

developed and implemented. Secondly, the project has developed an elementary (proof-of-concept) 1-D 

time-dependent transport method for efficient transient analyses. The third capability has been to develop 

a thermal hydraulic method coupled to the neutronics transport module for VHTR/NGNP reactors.  

  



I. PROJECT OVERVIEW 

 

Objective 

 

This objective of this project has been to develop a 3D, advanced coarse mesh transport method 

(COMET-Hex) for steady-state and transient analyses in advanced very high-temperature reactors 

(VHTRs). The project includes a coupled neutronics and thermal hydraulic (T/H) core simulation tool 

with fuel depletion capability. 

 

Background: 
Theoretical modeling of steady-state and transient neutronics and thermal hydraulics behaviors has been 

an essential partner with experiment in designing, analyzing and optimizing VHTR/NGNP reactors. 

While many progresses have been made in this direction, there remain a variety of the most challenging 

areas where success has remained elusive.  

 

Advanced reactor core designs for the VHTR/NGNP project are likely to include a large degree of 

heterogeneity and complexity, which will require much more effective and robust neutronics and thermal 

hydraulics modeling than is currently in use for most reactor systems. The traditional steady-state 

calculation scheme for light water reactors consists of three steps:  (1) a series of detailed transport 

calculations using infinite-medium (specular reflective) boundary conditions (i.e., infinite medium 

assembly calculations) are performed for each unique assembly  (or “colorset”) in the core; (2)  spatially 

homogenized and energy collapsed cross sections are produced by flux-weighting the fine group or 

continuous energy cross sections, using the flux solution from the infinite medium assembly calculation; 

(3) the homogenized/collapsed parameters are used in a coarse-mesh, few-group nodal diffusion core 

calculation.  

 

The extension of this approach to VHTR/NGNP reactors seems inadequate for a number of reasons. 

Firstly, neutron flux and fission density in the core are calculated using low-order techniques, such as 

diffusion theory, which rely on an assumption of linear anisotropy in the angular distributions through 

improved definitions of the diffusion coefficient.  This assumption breaks down, and better techniques are 

required in regions with strong absorption, near material discontinuities, in fast energy groups and in 

general in (spatial and energy) regions where the flux gradient is sharp. Secondly, the lack of detailed 

(within assembly) solution because of the homogenization leads to the need for gross approximations in 

the reconstruction of the fuel pin power distribution. Generally, ad hoc methods, such as modulating the 

infinite medium assembly solution with the homogeneous solution from the core calculation, are used to 

obtain this distribution. In the absence of a new efficient whole-core transport code, these problems will 

remain unsolved for the foreseeable future. 

 

In an effort to overcome the limitations of the conventional low-order techniques, a heterogeneous coarse 

mesh transport (COMET) method (tool) for steady-state and transient analyses of VHTR/NGNP reactors 

has been developed in this project. The detailed description of each task can be found in section III. 

 

Products: 

 

The products developed as a result of this project are listed below: 

(1) A heterogeneous coarse mesh transport method/code for whole core calculations in 3-D 

hexagonal geometry for VHTR/NGNP prismatic reactors. This tool will be based solely on 

transport theory and will not require the homogenization of physics data within each coarse mesh. 

The proposed method will have the same accuracy and geometric flexibility as Monte Carlo 

methods and be significantly faster than the current fine mesh transport methods. 



(2) A depletion capability in COMET.  

(3) A 2-D thermal hydraulics module coupled to the neutronics transport module  

(4) A new set of 2-D and 3-D benchmark problems for VHTR/NGNP prismatic reactors 
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III. PROJECT TASKS 

 

Task 1. Development of the response function (RF) generator in 2-D hexagonal geometry 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

Some background on this response expansion method is given in this section.  The angular 

current on face f of mesh i can be expanded as 
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A method to generate the response expansion coefficients 
a

ifc  from Eq. (1) is as follows.  An incoming 

unit angular current distribution over one mesh face f is given as a source for a single mesh.  Vacuum 

boundary conditions are specified, and no current enters from the other five faces, such that for the sake 

of Eq. (1.2), ff ' : 
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A separate fixed source calculation is conducted for an incoming current source on each phase space 

expansion order on each unique face of each unique mesh in the core.  From each fixed-source 

calculation, the outgoing angular current J
+
 is determined for all six faces f’.  Using the orthogonality 

relationship, we solve Eq. (1.1) for 
'

'

a

ifc  given the calculated current exiting face f’: 
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For a complete set of coefficients, Eq. (1.3) must be solved for all expansion orders a’.  Following in the 

method of Forget and Rahnema, a tensor product of shifted Legendre polynomials is chosen as the 

orthogonal set in which to expand the angular current: 
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The reference system will be defined by the mesh face, where the spatial variable u extends along the 

length of the mesh face from 0 to U, the azimuthal angle  from the mesh face is defined from 0 to , and 

, the cosine of the polar angle  from the mesh face, extends from -1 to 1.  A more detailed description 

of the coordinate system used is presented with figures 1.1 and 1.2.  The multigroup treatment of the 

energy variable over G groups is used.  Therefore, the expansion coefficients for the angular current J
+ 

exiting face f’ of mesh i, in group g’, with spatial and angular expansion orders l’, m’, and n’ as a 

response to an incoming current on face f in group g having spatial and angular expansion orders l, m, and 

n are defined as Eq. (1.5): 
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Since in a hexagonal mesh, the spatial and angular variables defined by each mesh face will have different 

orientations, and since the planes defined by the mesh faces themselves are not linearly independent, it is 

evident that a set of coordinate transformations must be introduced.  The Cartesian coordinate system is 

used here for the sake of simplicity.  Fig. 1.1 depicts a typical hexagonal mesh in the Cartesian x-y plane.   
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Fig. 1.1. Mesh geometry in Cartesian coordinates 

 

To illustrate the concept of a different coordinate system for each mesh face, consider Fig. 1.2.  An 

example incoming source particle will be traveling from some position u in direction ̂  in three-

dimensional space.  Fig. 1.2a shows a portion of the mesh from Fig. 1.1, but is focused specifically on the 

lower-left mesh face; the mesh boundary is represented by a dashed line.  The projection of the direction 

vector ̂  onto the x-y plane is shown along with the angle , and the relation of the spatial coordinate u 

for this particular mesh face to the Cartesian x-y plane can be seen.  The outward normal unit vector n̂  

from the mesh face is also shown.  Fig. 1.2b projects the direction vector onto the plane defined by the 

Cartesian z axis and the outward normal of the mesh face n̂ .  The angle  is displayed, from which  can 

be calculated. 
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(a) projection onto x-y plane    (b) projection onto z-n plane 

Fig. 1.2. Mesh coordinate systems for incoming source particles 

 



The spatial coordinate u, defined along each mesh face, must be transformed into a coordinate in the 

Cartesian x-y plane.  Similarly, the angles  and  defined from each mesh face must be transformed into 

some combination of the angular components x, y, and z.  As an example, the Cartesian angular 

components for the illustrated face are found using Eq. (1.6): 
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        (1.6) 

 

A similar set of equations may be determined for each mesh face.  In this way, the incoming angular 

current surface source defined by Eq. (1.2) is applied to the coarse mesh. 

 

Neutrons will be transported through the mesh, with some being eventually absorbed within the mesh, 

and the rest escaping.  An exiting neutron will be at some position along a mesh face and traveling in 

some direction defined in Cartesian geometry.  A second coordinate transformation must be applied in 

order to solve Eq. (1.5), placing Cartesian coordinates back into the u, , and  phase space variables 

defined by the mesh face.  However, the coordinate system for particles leaving the mesh must be 

oriented so that the angular half-space over which the orthogonal expansion of the angular current is 

defined is that space outside of the mesh.  This must be done so that the current exiting one mesh is the 

same as that entering the adjacent mesh.  Fig. 1.3 shows an example mesh and its neighboring meshes; the 

mesh face coordinate systems for incoming neutrons are shown as dashed lines inside of the hexagonal 

meshes, while the mesh face coordinate systems for neutrons exiting the meshes are given as solid lines 

outside of the hexagonal meshes.  The coordinate system used for particles exiting each mesh face is the 

same as the coordinate scheme for particles entering the neighboring mesh face. 

 

 
Fig. 1.3. Interactions between meshes 

 



b. Task Status/Progress 

 

The two dimensional hexagonal method was tested using a variety of benchmark core 

configurations based on the HTTR core described in the section on Task 3: Development of a 

set of 2-D hexagonal benchmark problems.  A sampling of results is presented in Table 1.1, 

where the COMET results for a partially controlled core are compared with the MCNP 

benchmark solution.  The figures presented in the tables represent the relative differences 

between COMET and MCNP in eigenvalue, block-averaged fission density, and pin fission 

density, along with the uncertainty figures associated with the eigenvalue and fission density 

calculations as determined by COMET.  The final entry on the table is the computation time 

required for COMET to compose the solution on a single processor in seconds.  This 

compares quite favorably to the hours or days required on a computing cluster for an MCNP 

solution of comparable precision in pin fission reaction rates. 

 

Table 1.1. Partially Controlled Core Expansion Order Analysis 

 (2,2,2) (4,2,2) (2,4,4) (4,4,4) 

RE k-eff (pcm) 27 41 -26 -10 

k-eff pcm 2 2 2 2 

Block AVG % 0.040 0.022 0.023 0.008 

Block RMS % 0.043 0.024 0.027 0.010 

Block MRE % 0.039 0.022 0.023 0.008 

Block MAX % 0.069 0.044 0.046 0.022 

Pin AVG % 0.079 0.045 0.067 0.032 

Pin RMS % 0.128 0.057 0.118 0.039 

Pin MRE % 0.069 0.043 0.057 0.031 

Pin MAX % 0.791 0.222 0.732 0.123 

AVGpin  0.020 0.020 0.020 0.020 

MAXpin  0.025 0.025 0.026 0.026 

Time (s) 63 172 178 482 

 

 

 

Task 2. Development of the deterministic sweeping method in 2-D hexagonal geometry 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The final step in the method is a deterministic sweep which composes the solution to the 

problem.  Each mesh within the core is solved in sequence to determine the angular current 

response expansion coefficient at each face.  Since the solutions of the fixed-source transport 

problems within each mesh are independent of the solutions in neighboring meshes, the 

choice of sweeping order should not affect the accuracy of the solution.  However, differing 

sweeping techniques influence the speed of the convergence of the solution.  A diagram of 

three sweeping methods is included in Fig. 2.1.   

 



 
(a) In-Out   (b) Out-In   (c) Rows 

Fig. 2.1. Mesh sweeping schemes 

 

b. Task Status/Progress  

 

An outward and an inward sweeping scheme, both of which sweep symmetrically through the 

core, have been tested.    It was determined that there was no difference in accuracy between 

the two sweeping orders, although the scheme depicted in Fig. 2.1a did lead to faster 

convergence of the solution.  Forget et al. recommended that the sweeping order be chosen 

based on the symmetry of the problem; indeed, the asymmetric sweeping method depicted in 

Fig. 2.1c was found to be significantly less efficient in coming to a converged solution than 

the other two sweeping schemes. 

 

Task 3. Development of a set of 2-D benchmark problems 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 
To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to 

create heterogeneous benchmark problems that are typical of whole core configurations. We have 

created two and three dimensional numerical benchmark problems typical of high temperature gas 

cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also 

included. These problems were derived from the HTTR start-up experiment. Since the primary utility 

of the benchmark problems is in code-to-code verification, minor details regarding geometry and 

material specification of the original experiment have been simplified while retaining the heterogeneity 

and the major physics properties of the core from a neutronics viewpoint. A six-group material 

(macroscopic) cross section library has been generated for the benchmark problems using the lattice 

depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three 

configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. 

These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local 

peaking factors, the absorption densities in the burnable poison and control rods, and pin fission 

density distribution for selected blocks. Also included are the solutions for the single cell and single 

block problems.    
 

b. Task Status/Progress 

 

The benchmark specifications, problems, and their solution were published in Annals of 

Nuclear Energy. These problems have been used extensively in the development of the 

hexagonal neutronics method, and also by research groups elsewhere to benchmark their own 

transport methods under development. 



 

Task 4. Development of the 1-D time dependent RF generation method 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

  To limit the attention and scope of this work to the time dependence of the transport 

problem, the spatial domain will be restricted to one dimension.  This restriction additionally 

limits the domain of neutron directions to one dimension (in the polar angle).  For notation, 

we therefore define the phase space (i.e. the space-angle domain) as 

 V   

with [ , ]V a b  and [ 1,1]  .  The time domain will be defined, without loss of 

generality, as the positive real line: 

 [0, )  . 

The boundary of the phase space will be decomposed into four elements corresponding to the 

positive and negative angular half-spaces (
  and 

 , respectively) at the two boundary 

points: 
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In this simplified context, the time-dependent transport equation can be written as 
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Because the current work is principally focused on the time dependence of the transport 

problem, the multigroup subscripts will be omitted; the quantity 
( , )x t

 will therefore denote 

a scalar-valued function in one-group contexts and a vector-valued function otherwise.   

To complete the problem definition boundary and initial conditions must be specified. Time-

dependent boundary conditions are prescribed in terms of arbitrary boundary operators: 
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with the partial currents defined with respect to the surface outward normal directions as 
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Additionally, a given initial condition is prescribed on the angular flux at time 0t  : 

 
0(( ,0) ),x xx  

. (1) 

Equation (4.1) along with conditions Error! Reference source not found. and (1) constitute 

the global problem, in contrast to the local problem that will be discussed in the following 

subsection. 

The primary philosophical approach of the coarse-mesh transport (COMET) method can be 

summarized in two steps: 

1. decompose the global problem into a series of local problems; then 

2. couple the local problems using response functions to reconstruct the global problem 

solution. 

The decomposition of the global problem into a sequence of local problems is discussed next, 

followed by a construction of the response-based framework for the global-local coupling.  

Both of these sections follow the principles utilized in the previous steady-state COMET 

work, but are rigorously repeated and extended here with the inclusion of the time variable. 

 

Global-Local Decomposition 

To decompose the global problem into a sequence of local problems, the system volume, V, is 

partioned into N non-overlapping sub-regions (coarse meshes).  Specifically, if the mesh is 

defined by the set of points 
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The local problem is now formed by restricting Equation 

Error! Reference source not found. to one of the n
 sub-spaces: 
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where the n  subscripts have been added to note the problems local domain.  The local 

problem boundary conditions are formed by replacing the external (partial current) boundary 

condition operators of Equation (4.2) with the incoming partial currents from adjacent mesh 

cells: 
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The initial condition is formed by simply restricting 0 ( )x
 to n

: 

 
0( , ,(0) )n n nx x x  
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Equations (4.4-6) now constitute N local problems derived from the global problem given in 

the previous section.   

At this point, no approximations have been in decomposing the global problem: the collection 

of the local problem solutions, 
( , )n x t

 , are together equivalent to the global problem 

solution.  This formulation is useful because it facilitates a decoupling of the local problems. 

Specifically, it can be seen that each local problem is completely independent of all others 

except for the time-dependent flow of neutrons through its bounding surfaces.  In Section 2.4, 

the boundary sources will be approximated in a way that permits a complete decoupling of 

the local problems.  First, however, a generalized response equation is derived to compactly 

and explicitly represent the local problem solutions in terms of the local boundary and initial 

conditions. 

 

The Response Equation 

 As the name implies, a response equation describes the neutronic response of a system 

given some source term.  The driving sources in Equation (4.4) are the initial condition 

[Equation (4.6)] and boundary sources [Equation (4.5)].  Rather than applying these sources 

as conditions on the transport equation, it will be useful in the subsequent analysis to include 

them as explicit source terms, so that Equation (4.1) has the form 
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where the two additional terms represent the boundary and initial conditions, respectively, 

and ( )t  is the Dirac delta function.  Note that because the boundary and initial sources are 

included explicitly in this expression, the boundary and initial conditions are replaced by 

free-surface and zero initial conditions, respectively. 

 The incoming partial currents in Equation (4.5) already have the correct definition as a 

source terms, so the boundary source may be simply defined as 

 1
1 1 1( , ) ( ) , ) () , )( (

n n

BC

n n nn nx x t xq x t tj j x  


 

 

  
    (4.8) 

where a

   is the characteristic function, satisfying 
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 A similar expression for the initial source can be derived by integrating Equation 

Error! Reference source not found.  over an infinitesimal time interval centered at time 

0t  : 
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The fact that there are no sources defined for 0t   implies that 0
( , ) 0lim

t
x t




. Therefore, 

Equation (4.9) reduces in the right-hand limit to 
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Requiring that the original initial condition, Equation (1), hold provides a definition for the 

initial source term: 
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Inserting this definition along with the boundary source term into Equation (4.7) results in 
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Equation (4.12) accounts for all neutron sources explicitly, rather than using initial and 

boundary conditions.  Because the solution of the transport equation is linear in its source 

terms, one could write the flux as a linear combination of four components with respect to the 

four source terms on the right-hand-side of Equation (4.12).  If each of these components is 

expressed as a generalized response to a given source, then it follows that the angular flux 

may be written in  
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where R  is a functional that, given some space- and time-dependent source, returns the flux 

response at point 
( , )x t

.  This functional can in fact be defined specifically in terms of the 

point-source Green’s function associated with Equation (4.12): 
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where the Green’s function satisfies 
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A similar equation for the surface partial currents can be obtained by simply multiplying both 

sides of Equation (4.13) by | |  and evaluating at the boundary points.   

Equation (4.13) is an ideal form of the response equation: it provides a formula for the 

angular neutron flux (and surface partial currents) in terms of arbitrary neutron sources and a 

response kernel (the Green’s function).  Ultimately it will be shown that the response 

equation for the angular flux [Equation(4.13)] is primarily useful for coupling local transport 

solutions in time, while the corresponding equation for the partial currents is primarily useful 

for coupling local transport solutions in space.  Also, in the next section it will be shown that 

there is no need to explicitly compute the Green’s functions—they are presently used as a 

placeholder for an underlying (local) transport calculation.  Nevertheless these response 

equations form the theoretical basis of the COMET method, and additional examples of the 

method’s derivation are included in the reference (Pounders and Rahnema: A Coarse-Mesh 

Method for the Time-Dependent Transport Equation). 

 

b. Task Status/Progress 

 

The time dependent response expansion method was implemented into a computational 

framework as part of Task 5, described below. 

 

Task 5. Development of the 1-D time dependent sweeping method 



 

1. Task Status and Significant Results 

 

a. Task Summary 

 

To summarize the developments of the previous section, the solution of the time-dependent 

coarse-mesh transport can be obtained from a set of response equations over a coarse 

partition of the reactor phase space in a finite time interval.  Approximate solutions of the 

response equations are obtained by projections onto polynomial spaces spanned by 

combinations of shifted Legendre polynomials.  This formulation permits a convenient 

decoupling of the global problem into a sequence of local (coarse-mesh) transport problems 

that are characterized by response functions that can be calculated independently of the other 

local problems.  As a result, the computational process can be divided into two phases: 

1. Pre-computation: calculation of the response function coefficients for each coarse mesh; 

2. Solution construction: coupling of the coarse meshes in space, angle and time by a 

deterministic algorithm. 

This divided approach is very well suited for reactor problems because reactors are often 

modeled using only a finite number of unique fuel assemblies or blocks.  Choosing a single 

fuel assembly as a coarse-mesh therefore means that one is able to reconstruct a full-core 

solution using only a relatively small number of response functions.  The efficiency of this 

approach has been demonstrated in the steady-state work on this topic.   

 

b. Task Status/Progress 

 

A semi-infinite medium 
 [0, ]z 

 with an oscillating impinging current, 

0( ) 1 sint t  
, is studied in this example.  Because this is an infinite-medium fixed-

source problem, there is no volumetric initial source, and the only response that needs to be 

calculated is the exiting partial currents.  The response equations therefore simplifies to 
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The time-expansion coefficients of the incident source were calculated using the adaptive-

recursive Simpson’s rule in MatLab
®
.  This example primarily serves to test the 

approximation of the surface-to-surface time-convolution approximation. 

 Figure 5.1 shows the solution using an 11
th
 order time-expansion and a histogram plot of 

the MCNP Monte Carlo reference solution.  Table 5.1 presents the average (AVG), root-

mean-square (RMS) and maximum (MAX) errors of the solution integrated over each of the 

MCNP time bins. 

 

 



 
Figure 5.1:  Example 3, plot of 11

th
 order response solution and  

MCNP reference solution histogram 

 

 

Table 5.1: Example: Bin-Integrated Error Statistics 

Expansion order AVG RMS MAX 

8 2.76% 3.60% 8.34% 

11 0.14% 0.18% 0.41% 

14 0.02% 0.03% 0.08% 

17 0.02% 0.03% 0.09% 

 

Additional examples of the method’s performance are included in the reference (Pounders and 

Rahnema: A Coarse-Mesh Method for the Time-Dependent  

Transport Equation). 

 

 

Task 6. 1-D time dependent benchmark problems 

 

 

Four example problems are used to test the 1-D time-dependent COMET. These examples are 

roughly in order of increasing complexity. 

 

6.1 Olson-Henderson Slab 

The first problem that is considered is a homogeneous, finite slab. The slab initially has no 

neutrons, and at time t = 0 a uniform, isotropic source is “turned on” and remains on for the 

duration of the problem, eventually evolving to a steady-state distribution. The slab is ten mean-

free-paths in width with vacuum boundary conditions and is not fissionable; the ratio of the 
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scattering to the total cross section is 0.9. This problem was chosen because there is an analytical 

solution available in the literature (Olson and Henderson 2004). 

 

Fig. 6.1 shows the analytical, COMET and discrete ordinates (S32) flux solutions as a function of 

space at 1.0, 2.5, 5.0, 7.5 and 10 mean-free-times. The COMET solution was generated using a 

5th order angular expansion, 10th order spatial expansion and 10
th
 order time expansion. 

 

 

 
Fig. 6.1: Example 1, analytical (crosses), discrete ordinates (blue) and COMET (red) flux 

distributions; solutions shown at t = 1.0, 2.5, 5.0, 7.5,10 mean-free times 

 

6.2 Infinite Medium Example 

The second problem is infinite and homogeneous in the spatial dimension. Although the problem 

is physically an infinite medium, it is modeled in COMET as a finite slab with specular reflection 

boundary conditions to verify the theory and the implementation of the new time-dependent 

theory. 

 

Fig. 6.2 shows the converged COMET solutions with time steps equal to 7 and 21 using a 15th 

order time expansion (the results are accurate enough that the plots are visually  

indistinguishable). 

 



 
 

Fig. 6.2 Example 2, plot of scalar flux vs. time for exact solution and 15th order response-

based solutions with time steps equal to 7 and 21 

 

6.3 Semi-Infinite Medium With Time-Varying Incident Source 

A semi-infinite medium ( z∈[0,∞]) with an oscillating impinging current, Γ (t) =1+sinωt , is 

studied in this example. Because this is an infinite-medium fixed source problem, there is no 

volumetric initial source, and the only response that needs to be calculated is the exiting 

partial currents. The solution to this problem is present in Task 5. 

 

6.4 ANL Fast Reactor Benchmark 

In this last example, a 2-group heterogeneous fast reactor benchmark based on Benchmark 16 

from the Argonne National Laboratory Benchmark Problem Book (1985) is examined. 

 

The reactor consists of seven homogeneous regions that are summarized in Table 6.1. The 

solutions presented here include prompt neutrons only. The initial critical flux distributions 

are shown in Figure 6.3. The discrete ordinates solution uses 32-point Gauss-Legendre 

quadrature in angle and a finite difference scheme spatially; the COMET solution uses an 8th 

order angular expansion and 15th order expansion in space. The comparison of the critical 

flux configuration is shown in Fig. 6.4 

 



 
Fig. 6.3 ANL Benchmark Geometry 

 

 

Table 6.1 ABL Benchmark Characteristics 

 
 

 

 
Fig. 6.4 ABL Benchmark Critical Flux Configuration 

 

 

 

 



Task 7. Development of a flux expansion method for 3-D hexagonal configurations 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

For the 2-D method described in Task 1, the the incident angular current was used as the boundary condition for 

coarse mesh fixed source problems.  This treatment expanded the angular current as 
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The orthogonal set used in this case was the product of the shifted Legendre polynomials over position and angle, as 

given by Eq. (7.2): 
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From this point onward, the position r


 will be given in terms of the spatial variables u, which is defined along one 

direction of the mesh face from 0 to U, and v, which represents the position in the other dimension of the mesh face 

between 0 and V.  The direction ̂  will be given in terms of the cosine  of the polar angle  from the mesh face, 

and the azimuthal angle .  The delta function is used to specify a multigroup (discrete) energy treatment over G 

groups. 

 

The expansion coefficient for the angular current J
+
 exiting face f’ of mesh i, in group g’, with spatial and angular 

expansion orders l’, m’, n’, and p’, as a response to an incoming current on face f in group g being of spatial and 

angular expansion orders l, m, n, and p, is determined as follows: 
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However, coincident research in water-moderated reactors has suggested that expanding the incident angular flux in 

a combination of the Legendre polynomials over the spatial domain, the Legendre expansion of the cosine of the 

azimuthal angle, and the Chebyshev polynomial of the second kind defined over the cosine of the polar angle yields 

better results, as such an expansion preserves not only the particle balance at the mesh interfaces, but also describes 

an isotropic flux at the boundary when the 0
th

 order is used.  As the angular flux has a large isotropic component in 

highly scattering reactors, it has been suggested that expanding the angular flux requires a lower order of expansion 

to achieve similarly accurate results when compared to an angular current expansion at the mesh boundary.  The use 

of angular flux as the physical quantity of expansion changes the boundary condition to 
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and the expansion function is defined 
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The coefficients may be found 

 

 ifglmnp

pnmlgfic ',',',',',',           (7.6) 

                      dEddudvdEEPUvPuPEvu gpn

V

m

U

lif  
'

,0

'

1,1

'

,0

'

,0

'' cos
~~~

,,,,  



 

An investigation of these boundary conditions using benchmarks based on the HTTR and on a smaller test core was 

conducted, and it was concluded that a response expansion of the angular flux presents the superior boundary 

condition to the current expansion used previously. 

 

Treatment of Hexagonal Geometry 

 

Previously, the COMET method has been used in 2-D hexagonal geometry and in both 2-D and 

3-D Cartesian geometry.  In these cases, the faces of the coarse meshes are represented as either 

one dimensional line segments (in 2-D problems) or as two dimensional rectangular faces (in 3-

D Cartesian geometry.  A hexagonal prismatic mesh has six rectangular faces, for which the 

existing method of expansion in the spatial variables u and v is adapted without modification.  

However, the top and bottom hexagonal faces present a new challenge: a new scheme is 

necessary in order to describe the mesh faces in two spatial dimensions. 

 

x

y

v

u

 
Figure 7.1. Top mesh face coordinates 

 
The expansion over the two spatial variables is maintained over the hexagonal mesh faces.  Figure 7.1 

illustrates the top face of a hexagon, indicating the u and v axes over the mesh face.  The u variable 

continues to indicate the position along the x axis, however, the v variable must be transformed from 

describing simply the y coordinate to describing the position in that direction with respect to the edges 

of the mesh face.  This transformation means that the length from 0 to V in the v direction is no longer 

constant, but is a function of position in the u direction; when u is equal to 0.5, V represents a length 

which is double that when u is equal to 0 or 1. 
 

b. Task Status/Progress 

 

The theory for the flux expansion has been published and adapted into Task 8. 

 

Task 8. Development of the RF generator for 3-D hexagonal geometry 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 



The response function generator was developed by implementing the theory as described in 

Task 7 into a modified version of MCNP5 and used in conjunction with the deterministic 

sweeping method described in Task 9.   

 

b. Task Status/Progress 

 

Results using the methods in Tasks 7 and 8, used with the method developed in Task 9, were 

successful; more detail is in the following section. 

 

Task 9. Development of the sweeping method for 3-D hexagonal geometry 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The final step in the method is the deterministic iterative procedure which composes the 

solution to the whole core problem.  Starting with an initial guess for the eigenvalue and flux 

distribution, the outgoing response to the hypothesized incoming current is determined for 

each mesh, proceeding in a given sweep order.  It was previously shown (in Task 2) that the 

sweep order did not affect the accuracy of the solution, but that sweeping from the center of 

the core outward yielded results more efficiently than other sweeping methods which had 

been proposed.  The method retains this outward sweeping scheme, in which new response 

expansion coefficients are first determined for the angular flux exiting the center mesh, based 

on an initial guess for the angular flux entering that mesh.  The process repeats for each mesh 

in the core, with the sequence of meshes ordered in an outward sweep. 

 

b. Task Status/Progress 

 

Table 9.1 contains a comparison of results determined by the 3-D hexagonal COMET with 

those determined by a whole core Monte Carlo calculation.  The first line is the expansion 

order of the calculation, where the numbers in parenthesis are the maximum orders of l, m, n, 

and p used in equation (7.6) for the synthesis of the solution.  The following lines are the 

relative error/difference between COMET and MCNP in eigenvalue, followed by the 

uncertainty in the eigenvalue calculation.  The next three lines are the errors in the pin fission 

density results: average absolute error, mean relative (flux weighted) error, and maximum 

absolute errors are presented.  The computational runtime in minutes on a single processor is 

on the last line of the table, compared to hours or days on a large cluster for whole core 

Monte Carlo to solve the same problem.  Results are given for a core configuration with some 

rods in, but many other core configurations were solved with similar accuracy. This is 

presented as a brief summary. 

 

Table 9.1. SRI HTTR 

 (2,2,2,2) (2,2,4,4) (4,4,2,2) (4,4,4,4) 

RE k (pcm) 56 45 22 21 

k (pcm) 63 63 63 63 

AVG % 0.34 0.37 0.34 0.34 

MRE % 0.32 0.34 0.33 0.33 

MAX % 1.98 1.90 1.28 1.28 

runtime 

(min) 
114 187 147 278 



 

 

 

Task 10. Development of a set of 3-D benchmark problems 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

Alongside the 2-D benchmark problems developed in Task 3 using Japan’s HTTR as a guide, 

several 3-D configurations were solved and published.  A fully detailed description of all core 

configurations was given, along with material specifications and nuclear data in the form of 

multigroup cross sections.   

 

b. Task Status/Progress 

 

A set of 3-D hexagonal neutronics benchmarks accompanied the 2-D problems in Task 3. 

 

Task 11. Development of a depletion module 

 

1. Task Status and Significant Results 

 

In an operating nuclear reactor, the isotope composition of a nuclear fuel changes due to 

nuclides transforming to other nuclides via spontaneous radioactive decay and neutron-

induced transmutation reactions. To take this effect into account, a fuel depletion capability is 

developed in this task to couple with the COMET neutronics module. One of the most widely 

used simulation methods is based on macro depletion techniques which calculate cross 

sections as a function of assembly averaged burnup as well as other core state parameters. 

These cross sections are generated by performing single assembly lattice depletion 

calculations. In this project, the whole-core depletion method in COMET is developed in a 

similar manner. The detailed description of numerical steps for COMET burnup calculations 

are presented below: 

 

(1) Burnup rate dependent cross section generation 

In the first step, HELIOS, which is an advanced lattice depletion code with both method 

of characteristics (MOC) and collision probability (CPM) solvers in general geometry, is 

used to generate multi-group cross sections for each region at a set of pre-defined burnup 

points,           . 

 

(2) Response function library generation 

The response function generator, a modified version of MCNP, is used to generate the 

response coefficient library for each unique assembly at the pre-defined burbup points. 

 

(3) COMET whole core transport calculations 

The response function library pre-computed in step (2) is used to perform whole core 

transport calculations. A detailed description can be found in tasks 2 and 9.  

 

(4) Macro depletion calculation  

The power distribution computed in step (3) is used to calculate the burnup rate in each 

region as: 



    
   

  
  
⁄

  
  
⁄

                                                                     (11.1) 

 

where   , P and G represent the burnup increment, power and heavy metal loading, 

respectively, and subscripts “i” and “c” represent region i and the reactor core.  

 

(5) Update response functions  

Once the average burnup rate for each assembly is determined, the response function can 

be interpolated as: 
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where   ( ) is the response function for assembly i at burnup rate B.   

 

The updated response functions are then used to perform new whole-core neutronics 

calculations at the new burnup sate. 

 

To test the COMET depletion module, a 2D benchmark problem shown in Fig. 11.1 is used. 

The radial core geometry of the core consists of 4, 21.42 cm × 21.42 cm, fuel assemblies. 

Reflective boundary condition is assumed on the four external surfaces. Two types of fuel 

assembly (enriched  and natural UO2) used in this problem are composed of 17x17 grid of pin 

cells as shown in Fig. 11.1.  Each pin cell consists of a circular pin of fuel, and zirconium 

cladding and surrounding moderator. In enriched UO2 rods, the fuel is enriched to 3.68 wt% 

in U-235.  

 

 
Fig. 11.1 2D 2X2 Benchmark problem  

 

HELIOS is used to generate 2-group cross sections for the two assemblies at 35 different 

burnup rates: 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 



22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44 GWd/tU. The response function library 

based on these 2-group cross sections is used to perform COMET whole-core calculations for 

the benchmark problem described above. HELIOS is also used to generate the reference 

solution for this benchmark problem. The comparison of eigenvalues predicted by the two 

codes is illustrated in Table 11.1. 

 

Table 11.1 Eigenvalue predicted by HELIOS and COMET 

Core Averaged Burnup 

(GWd/tU) 
HELIOS COMET Difference (pcm) 

0 (Fresh) 1.15604 1.15981 377 

2.5  1.0957 1.09663 93 

5 1.07087 1.06960 -127 

10 1.02375 1.02007 -368 

15 0.98465 0.97968 -497 

20 0.95078 0.94542 -536 

 

As it can be seen from table 11.1, the eigenvalues predicated by COMET agree very well 

with those computed by HELIOS, with a maximum error of about 500 pcm. It should be 

pointed out that COMET is at least 4 orders of magnitude faster than HELIOS. The CPU 

running time for each COMET calculation is 2-3 seconds, while HELIOS takes about 20 

hours for each burnup calculation.  

 

Task 12. Development of a thermal hydraulic module 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

A new methodology for the accurate and efficient determination of steady state thermal 

hydraulic parameters for prismatic high temperature gas reactors is developed. Full core 3-D 

heat conduction calculations are performed at the individual fuel pin and assembly block 

levels. A simplified 1-D fluid model is developed to predict convective heat removal rates 

from solid core nodes. Finite volume discretization of energy, and momentum conservation 

equations are formed for each graphite and fuel unit cells, and then explicitly integrated in 

time. Using and initial temperature guess, iterations are performed until all local core 

temperatures stabilize and global convective heat removal matches heat generation. Assembly 

average block and fuel temperatures are then passed back to the neutronics module for pin 

power, and eigenvalue calculations.  

 

Core temperature distributions are obtained with reduced computational cost over more 

highly detailed computational fluid dynamics codes by using efficient, natural models for the 

relevant thermal fluid and thermal transport phenomena. The thermal hydraulic module is 

parallelized using the distributed memory MPICH implementation of Message Passing 

Interface (MPI). Heat conduction and fluid calculations are divided equally among available 

processors. Typical steady state convergence is achieved after 18 hours on 8 processors.  

 

b. Task Status/Progress 

 

The thermal hydraulic module predicts whole core temperature, and mass flow distributions 

including bypass flow, using simple input files that contain all the necessary geometry and 



thermal-fluid conditions. Results from the simulation are contained primarily in simple text 

files which can be read in to plotting software for visual inspection. 

 

The level of detail of the developed method exceeds the current state-of-the-art for prismatic 

gas cooled reactor steady state thermal hydraulics. Using commonly assumed power profiles, 

and bypass gap dimensions, the predicted steady state temperature and mass flow 

distributions are comparable to those presented in the literature for either the MHTGR or GT-

MHR reactor designs. Comparing the results from the developed method to CFD analyses in 

the literature shows that the temperature distribution within a single representative active fuel 

assembly block is similar. Differences can be primarily attributed to the single block CFD 

analyses which do not capture core environment mass flow effects. When comparing to more 

broad based, or system level codes, only the average graphite and fuel temperatures for a few 

assemblies can be compared. The average temperature results, for the peak assembly, in these 

cases are slightly higher than what is predicted by system level codes due to non-uniform 

mass flow in the core.      

 

The development of the thermal hydraulic module is completed and results have been 

presented at two conferences with a journal paper expected.  

 

Task 13. Implementation and test of coupled neutronics/thermal hydraulic calculations 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The thermal hydraulic and neutronic methods are coupled via pin fission density and block 

temperature data. An initial guess is made for the core temperature distribution, and the 

fission density profile of the core is determined for this set of temperatures. The fission 

density profile is given to the thermal fluids solver, which converts the data into power 

density figures, assuming a constant core power. A calculation proceeds to determine the core 

temperature profile based on the given power data. Average temperatures for the blocks are 

taken; for fuel blocks, both an average fuel temperature and an average moderator 

temperature is found, while for reflector blocks, only one value is taken to represent the block 

average. These results are given back to COMET for another core calculation. COMET takes 

the temperature data from the fluids solver, interpolates between temperature-dependent 

response function information in its data library, and determines the proper response function 

for each block, assuming the validity of linear interpolation between temperature points.  

Sensitivity analysis of the method is necessary in the near future to determine the legitimacy 

of this approach. The process continues until both the temperature data and the pin power 

profile converge to desired criteria.   

 

b. Task Status/Progress 

 

The coupled neutronics/thermal hydraulic method has been tested for a prismatic VHTR 

similar to the Modular High Temperature Gas Reactor (MHTGR) design. This is a 350 MWt 

core with prismatic graphite block structure and helium coolant. Coolant inlet temperature 

and pressure is 259°C and 6.39 MPa respectively. The core is composed of three inner 

reflector rings, surrounded by three active fuel rings, which are surrounded by two outer 

reflector block rings. Average coolant exit temperature is near 690°C. Principal results of the 

coupled analysis are described in the conference paper, Connolly et al. (2013). The following 

paragraphs summarize the results and key findings.  



 

An initial temperature distribution equal to 350°C was assumed for the first neutronic 

iteration. The resulting pin fission densities were communicated to the thermal hydraulic 

module which proceeded to compute the graphite and fuel temperature distributions. A total 

of 9 coupled iterations (9 COMET iterations and 9 TH iterations) were performed with most 

COMET iterations completing in under an hour and the thermal hydraulic iterations under 18 

hours. Convergence of the coupled method was verified by observing the change in 

eigenvalue and average temperature between iterations. The change in eigenvalue after 9 

iterations was less than 10 pcm. The change in average core temperature after 9 iterations was 

less than 0.1°C.  

 

The results from the converged coupled analysis indicated that power peaks near the inner 

and outer reflector block rings. Without any control rods inserted, the power peaks axially 

near the top of the reactor where the core is cooler. Fuel and graphite temperatures follow 

intuitively from this power distribution. Peak fuel temperatures are near 1050°C. Peak 

coolant temperatures exiting the reactor were near 922°C. The average temperature was lower 

due to cooler coolant exit temperatures from bypass flow in the reflector block regions.  

  



V. SUMMARY AND CONCLUSIONS 

 

The objective of this research project is to develop a heterogeneous coarse mesh transport method/code 

for whole core calculations in 3-D hexagonal geometry for VHTR/NGNP prismatic reactors. In this 

method,  a large heterogeneous eigenvalue (global) problem is decomposed into a set of smaller fixed 

source (local) problems without approximation and therefore with equal fidelity at all hierarchical levels 

(i.e., from the global (core) level to lower levels such as the fuel assembly). This method solves the global 

problem by iteratively using response functions to couple coarse meshes through interface partial 

currents. The whole core calculations are found to be highly accurate and very efficient. 

 

A new thermal hydraulic method is developed for core-wide analysis of prismatic VHTR/NGNP reactors. 

The method allows for the complete solution of temperature and coolant mass flow distribution by 

solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit 

cells for which the average temperature of each unit cell is determined. Convective heat removal is 

coupled to the unit cell energy balances by a 1-D axial flow model. The coupled neutronics/thermal 

hydraulic method has been tested for a prismatic VHTR similar to the Modular High Temperature Gas 

Reactor (MHTGR) design. 

 

A whole-core depletion method is developed to couple with COMET to provide transport theory analyses 

of reactor cores. This method is based on macro depletion techniques where the response coefficient 

library is generated as a function of assembly averaged burnup. Benchmark calculations have verified the 

method’s high efficiency and accuracy. 

 

In addition, a new time-dependent coarse-mesh transport model is rigorously developed. This new 

method relies on polynomial expansions of the solution to continuously couple coarse meshes in both 

space and time. Each mesh in the problem is completely characterized by a set of pre-computed response 

functions. By shifting the majority of the computation to the response function calculations, the actual 

core analysis can be performed very efficiently. Four example problems are used to demonstrate its high 

accuracy and efficiency. 

 

Based on the encouraging results and efficiency obtained in this project it is recommended to extend this 

method to 3-D time-dependent problem. This will results in a highly accurate and efficient method for 

practical whole core calculations for prismatic VHTR design and analysis. 

 

 

 

Task/Milestone Status 

 
Milestone/Task Description Percent 

complete 

1. Development of the RF generator in 2-D Hexagonal Geometry 100% 

2. Development of the deterministic method in 2-D hexagonal geometry 100% 

3. Development of a set of 2-D benchmark problems 100% 

4. Development of 1-D time dependent RF generation method 100% 

7. Development of a flux expansion method for 3-D hexagonal configurations 100% 

8. Development of the RF generator for 3-D hexagonal geometry 100% 

9. Development of the sweeping method for 3-D hexagonal geometry 100% 

10. Development of a set of 3-D benchmark problems 100% 

11. Development of a depletion module 100% 



12. Development of a thermal hydraulic module 100% 

13. Implementation and testing of coupled neutronics/thermal hydraulic/depletion 
calculations & benchmarking 

100% 

14. Reports, conference and journal papers 100% 
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