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Matrix of Faculty, Students, Tasks and Topics 
 
 
 

 
This final report covers quarters 1-12 in the Gantt chart below. 
 

 
  

Primary Faculty 
Advisor(s) 

Topic Student 

Ting Zhu Atomistics and unit processes 
Informing crystal plasticity 
Informing KMC 
Uncertainty of interatomic potentials, boundary 
conditions, schemes, etc. 

Zhi Zeng, Passed PhD 
proposal in Spring 2015;  
expected to graduate in 
Spring 2016. 
 
 

Chaitanya Deo KMC and event frequencies for mechanisms 
Uncertainty of events, frequencies, unit 
processes, interactions, etc. 
Informing crystal plasticity 

Richard Hoffman – Passed 
PhD proposal  in Fall 2015; 
expected to graduate in Fall 
2016. 
Alex Moore , earned MS  in 
2014 and Passed PhD 
Proposal, expected to 
graduate in Summer 2016. 
Each partially supported. 

David McDowell 
and  Yan Wang 

Crystal plasticity 
Hierarchical multiscale modeling chains 
Interval probability estimates and schemes 
Oversight and collaborative execution of 
uncertainty propagation and mitigation 

Aaron Tallman, Passed PhD 
quals, will defend PhD 
proposal in November 2015; 
expected to graduate in Fall 
2017. 
Joel Blumer, graduated with 
MS in Spring 2015. 
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Overall Program Rationale and Goals  
 

Understanding and improving microstructural mechanical stability in metals and alloys is central to 
the development of high strength and high ductility materials for cladding and cores structures in 
advanced fast reactors.  Design and enhancement of radiation-induced damage tolerant alloys are 
facilitated by better understanding the connection of various unit processes to collective responses in a 
multiscale model chain, including: 

 dislocation nucleation, absorption and desorption at interfaces,  

 vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect 
sinks) in BCC Fe-Cr ferritic/martensitic steels 

 investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, 
Si, P, S) 

 time evolution of swelling (cluster growth) phenomena of irradiated materials 

 energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and 
formation of prismatic loops, informing statistical models of continuum character with regard 
to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip. 

 

In view of the obvious 
complexity of the mechanisms 
involved and approximations 
made in modeling necessitated 
by the disparity in length and 
time scale of applications with 
modeling and simulation, as well 
as limited number of physical 
experiments, uncertainty comes 
to the fore as  consideration in 
application of such schema.  This 
research program has focused 
on quantifying and managing 
uncertainty in multiscale 
modeling of the inelastic 
behavior of BCC Fe-Cr 
ferritic/martensitic steels at 
ambient and elevated 
temperatures as affected by 
irradiation damage, using a 
framework connecting 
atomistics, kinetic Monte Carlo 
and a coupled crystal plasticity-point defect rate theory model.  The primary platform is a multiscale 
modeling framework that includes first principles and atomistic simulations of knock-on events with 
regard to remnant vacancy and interstitial fields and loop defects, the influence of interstitials on 
dislocation core spreading and mobility, Metropolis Monte Carlo and kinetic Monte Carlo (kMC) studies 
of collective unit processes to accumulate damage over higher length and time scales at elevated 

Fig. 1: Multiscale processes and models that govern irradiation 
damage, defect clusters, and defect-dislocation interactions 
relevant to ambient and elevated temperature plasticity 
phenomena in structural materials in advanced reactors.  
Coupled FE-FD pertains to continuum crystal plasticity models. 
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temperatures that are relevant to structures in service in the cladding and core assembly of advanced 
reactors, and a continuum crystal plasticity model that couples point defect and dislocation 
production/annihilation/migration, considering interaction with interstitial loops.  Figure 1 illustrates 
various levels of the hierarchy of mechanisms and associated models.   

The goal of this three-year program was to establish a consistent methodology to quantify 
uncertainty in model parameter and inputs/assumptions, as well as numerical implementation, and to 
develop a means to consider: 

 Uncertainty quantification in each model 

 Propagation of uncertainty in multiscale model chains 

 Sensitivity studies and parametric evaluation of uncertainty on model problems. 
 

After the first year of the program, and in accordance with feedback from our technical monitor Dr. 
Laura Swiler, in October 2013 we consolidated the focus of the program to a set of three multiscale 
uncertainty sub-problems exercising different physical mechanisms and modeling and simulation 
aspects of the multiscale model chain in Fig. 1: 

1. Interstitial Loop/Dislocation Interactions in Irradiated Fe Alloys 
2. Void Nucleation, Growth and Interactions with Dislocations in Irradiated Fe Alloys 
3. Bottom-Up and Top-Down Uncertainty in Informing Crystal Plasticity for BCC Systems 

 
These sub-problems were carefully defined and mapped to exploit the connectivity of underlying 

ab initio, MD, KMC and crystal plasticity modeling in multiscale modeling chains.  This strategy refocused 
the parametric studies in Task 3 to be directed towards parametric sensitivity studies and corresponding 
uncertainty quantification and propagation in these critically important mechanisms and elements of 
multiscale model chain.  Initial program focus on feasibility studies of the Generalized Interval Bayes’ 
Rule (GIBR) in terms of shedding new light and capabilities on uncertainty in multiscale model chains 
culminated in the MS Thesis of Joel Blumer.   It was found that the GIBR has potential but is somewhat 
limited in its imposition of useful bounds for behavior in the classes of discrete and continuous 
multiscale models addressed in our three uncertainty sub-problems.  It remained a subject of inquiry in 
this program, but a desire to maintain focus on uncertainty propagation and mitigation in these three 
sub-problems drew the focus towards pursuit of uncertainty quantification using classical latin 
hypercube sampling and polynomial regression modeling, while maintaining the overall objectives of 
addressing complex multiscale phenomena in irradiated Fe-based alloys.  Work in the last year of the 
program (and continuing work in closure of the PhD theses based on this program) pursued this route 
on the three uncertainty sub-problems, in essence supporting these parametric studies listed in Task 3 

This program has produced novel approaches to quantifying uncertainty and its propagation across 
multiple models exercised to reflect physical phenomena occurring at vastly different length and time 
scales (from sub-nm (atoms) to tens  of microns (polycrystals)) and has spurred visibility of the field of 
multiscale uncertainty in the broader basic materials research community and the broader Materials 
Genome Initiative.  It has supported the thesis work of 5 graduate students, one completed MS thesis 
(4 PhD dissertations in-progress),  and has involved: 

 4 journal articles published, 1 submitted, 9 in preparation 

 20 conference presentations 

 1 MS thesis, several PhD theses in progress 
 
Faculty in this program have delivered five related invited seminars, and organized or co-organized five 
conferences and symposia organized related to multiscale modeling and uncertainty. 
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Task 1. Uncertainty quantification – specification requirements of hidden Markov 
model 

 
All elements of Task 1 were completed in Q7, on schedule. 

 
In accordance with feedback from our technical monitor Dr. Laura Swiler, we consolidated the sub-
problem definition in October 2013 to a series of three multiscale uncertainty sub-problems to achieve 
more focus.  These sub-problems were defined and mapped to exploit the connectivity of underlying ab 
initio, MD, KMC and crystal plasticity modeling in multiscale modeling chains: 
 

1. Interstitial Loop/Dislocation Interactions in Irradiated Fe Alloys 
2. Void Nucleation, Growth and Interactions with Dislocations in Irradiated Fe Alloys 
3. Bottom-Up and Top-Down Uncertainty in Informing Crystal Plasticity for BCC Systems 

 

Task 1. Ab initio, MD, KMC – uncertainty sources and representation in models 
 
This sub-task was completed in Q5 (October – December 2013).  We next present the mappings for first 
principles, MD and KMC models with in uncertainty sub-problems, along with model chains /linkages that 
were part of the Task 2 effort. 
 
Sources of Epistemic Uncertainties in Multiscale Modeling & Simulation 
All models require certain levels of abstraction; hence, approximation error is inevitable. The causes of 
these errors are the major sources of epistemic uncertainties in modeling and simulation (M&S). Epistemic 
uncertainty in M&S is also referred to as model form uncertainty. 
 
In density functional theory (DFT), the major source of model form uncertainty or error is the exchange-
correlation potential functionals, where many-particle interaction is approximated and simplified. In 
addition, the pseudopotentials are typically used to replace the Coulomb potential near each nucleus in 
the calculation, which also introduces numerical error. In the self-consistency calculation of ground state 
energy, the chosen threshold for convergence also introduces numerical error. 
 
In molecular dynamics (MD) simulations, the major source of model form and parameter uncertainties is 
the uncertainty associated with the interatomic potential function. As the input of MD, the approximation 
error is naturally propagated to the output prediction through the simulation process. Other sources of 
uncertainties include the cut-off distance in simulation for ease of computation, the imposed boundary 
conditions that may introduce artificial effects, simulation acceleration through modified potentials or the 
application of physically unrealistic high strain rates which is to overcome the time scale limitation of MD, 
the computational error with different computer architectures because of round-offs in floating-point 
numbers or task distribution and sequencing in parallel computation, the systematic error in 
measurement data that are used in model calibration, as well as other unknown biases introduced in 
building the models. 
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In kinetic Monte Carlo (KMC) simulations, the major sources of epistemic uncertainties are the incomplete 
even catalog and imprecise rates or propensities. The accuracy of KMC simulation depends on the validity 
of complete knowledge of all possible events. Furthermore, the true rates in physical world can vary along 
time. They are also dependent on the state of the system. For instance, external loads can change the 
diffusion of defects. Crowding effect exits in reactions where molecules easily block reaction channels. In 
KMC, events are also assumed to be independent for the convenience of computation. In reality, they 
may be correlated. The unknown correlation between events is another source of uncertainty. 
 
In summary, unknown bias and numerical treatment of any model in simulation introduce epistemic 
uncertainty into the model. As a result, the prediction as the simulation output is inherently imprecise. 
When macroscopic quantities as statistical ensembles are of our interest, the output is also inaccurate. 
Therefore, the simulation output contains both epistemic and aleatory uncertainties. Quantification of 
these uncertainties is necessary to improve the robustness of simulation prediction.  
 

Uncertainty Sub-Problems 
 
Y. Wang and D.L. McDowell co-advised PhD student Aaron Tallman, who collaborated with co-advised MS 
student Joel Blumer to chart out the flow of information in uncertainty sub-problems as a major 
collaborative effort within Task 1 of the project.   
 
First we discuss the UQ approach for these uncertainty sub-problems, followed by a discussion of 
modeling and simulations characteristic of each. 
 

UQ Method for Uncertainty Sub-problems 

 
We will describe application of the Generalized Interval Probability Method later in this report, with 
reference to the combined bottom-up/top-down crystal plasticity uncertainty sub-problem #3.   Here we 
describe the overall UQ strategy taken for the systematic treatment of all three uncertainty sub-problems 
within the context of the doctoral theses of the students supported by this NEAMS program over the past 
three years.  
 
Assumptions associated with the UQ approach are clarified, starting at a philosophical level and 
continuing through the execution of the procedure [1-7]. 

1) Identification of a Candidate model: The scientific model that will be used for this approach must have 
certain features, but otherwise it can have any form. The model must allow being calibrated to data, 
ideally by the adjustment of calibration parameters. It must be possible for one or more of these 
calibration parameters to be re-interpreted as physical parameters whose values are determined by 
a separate model.  

2) Construction of the Black Box: The model must be given a black box treatment. The scientific model 
as a whole can be considered as a combination of scientific theory and an empirical calibration. The 
hypothesis that will be tested in this procedure is only linked to the theoretical component of the 
model. However, the calibration parameters that inform the model may have theoretical limits to 
their values. These limits should be identified. The structural part of the model is then analyzed only 
by its behavior, as one would a black box model. This is to aid comparison of models of diverse classes 
which seek to describe or connect the same phenomena. The prior likelihood in the calibration space 
is assumed to be a uniform density across the structurally bound values. 
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3) Initial Sampling of Calibration Space: A polynomial regression on the calibration parameters to the 
Loss functions cannot be made without an initial sampling of the model across the calibration space. 
This sampling should be designed to minimize extrapolation, and should contain enough points to 
support the construction of the regression model of at least 2nd degree. 

4) Per Datum Loss Functions from Likelihood: The value of   /e m ey y   experimental response less 

model response divided by experimental std. dev. is linked to calibration space using a regression 
model for each datum. The composite likelihood-based objective function: 

  
21exp

2 i

i

f
  

   
 θ   

is defined, where i represents which datum, f is the per datum loss function of θ , the calibration space 
of the model. This form is a reflection of the per datum likelihood of the model according to a Gaussian 
model of experimental errors.  The per datum likelihoods are included together to reflect the 
hypothesis that the model is true for all data used. The pre-exponential portion of the likelihood is 
not included. This is because the regression functions are not one-to-one mappings. 

5) Mismatch of model structure from data as yardstick for level of discrimination in calibration space: 
The Maximum Likelihood Estimate or MLE of the model calibration parameters can be found by 
maximizing the objective function above. This calibration of the model reflects the closest 
approximation of the data that can be made within the constraints of the theory-informed model 
structure. Given that this approach is an attempt to measure the uncertainty associated with the 
model structure, the limitation of the structure (in the model’s inability to exactly match the observed 
data) is a crucial measurement. In cases where the data based objective function value of the MLE is 

less than  1
2exp  , a new term str  is added to the objective function: 

    
2

2
1

1Obj exp
2

n

i

istr

A f
 

 
     

 
θ θ   

The value of str  is determined such that at the MLE (for which ˆθ θ  ) : 

  
22

1

ˆ
n

str i

i

f


 
  

 θ   

The value A is a normalizing coefficient which is evaluated after str  is determined, such that: 

  
-space

Obj 1
θ

θ   

In this way, the likelihood-based objective function restricts the calibration space to values supported 

by experimental observations, to a degree which is reflective of the comparative mismatch to data of 

different calibrations of the model. This is an approach to the problem of overfitting in models, where 

a model’s calibration parameters are given values that compensate for structural shortcomings of the 

model [4].  

6) Likelihood estimate across theoretically bounded calibration parameter space as a top-down 
structural uncertainty measurement:  The resulting density function of the calibration space can be 
sampled or otherwise analyzed to find a measure of the uncertainty that remains in the structural 
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model after a calibration. Importantly, the calibration used here is not a classical deterministic 
calibration, where the MLE values for the calibration parameters might be chosen. Instead, this 
process prevents an overfitting-type situation from arising, i.e. where choices for parameter values 
are forced to compensate for inadequacies in the model structure. It prevents this by limiting the 
narrowness of the objective function with a structural variance term. The error or “distance” between 
the experimental response and the MLE calibrated model response is used as a yardstick in 
determining the likelihood ratios of different calibrations of the model. 
 

7) Loss function in calibration space: A loss function is defined in calibration parameter space to describe 
the extent to which the model can connect response data (via calibration) to different points in 
calibration space. The form of the function is taken from ordinary least squares approaches. 

      
2* *

-space

Loss Obj
j

j j

j

d



 


  
θ

θ

θ θ θ   

*θ  is the value of the calibration parameters given from a bottom up model or elsewhere which is to 

be evaluated as the connecting data. The values for θ  should be normalized for the above equation 

such that for any calibration parameter j,  inf 0j   , and  sup 1j   .  

8) Single Bottom-up model (without BU calibration) case, x   discrepancy: In the case where a single 
bottom-up model seeks to inform the calibration parameter values for the model in the black box, the 
bottom-up model is first assumed to be inflexible. This situation can arise if the bottom-up model 
cannot be calibrated or if the model results are the only information available. In this situation, a top-
down and bottom-up uncertainty measure cannot be made. Instead, a linkage can be analyzed in 
terms of the amount of discrepancy that accompanies reinterpreting calibration parameters in the 
mesoscale model as physical parameters determined by a bottom scale model. This discrepancy can 
be found using the loss function described in 7).  The discrepancy measure can be compared to the 

value of the loss function for other cases, such as the self-discrepancy (for ˆ   or MLE as 
connecting data), and the prior discrepancy, measured by replacing the objective function with a 
constant value (reflecting a uniform density in calibration parameter space). The prior self-
discrepancy may be useful for identifying the effects of the calibration boundaries on the loss function.  

a. Care in interpreting the results here must be taken: if the calibration boundaries are set too 
narrowly, prior discrepancy measures may be lower than posterior measures even when a 
moderate connection is present. This can easily happen if model precedents are used to 
estimate bounds. Care must be taken to ensure that calibrations of past models do not inform 
these limits, which are ideally structural (pre-calibration) and theoretical in nature. If for 
example, a survey of calibrated models were used to inform calibration parameter limits, the 
prior uniform distribution on this calibration parameter space would reflect an estimate that 
has already been informed by calibrations, and it would not reflect a prior that is free from 
information not present and defined by the model’s theoretical structure. 
 

9) Multi (or with calibration) Bottom-up case, TDBU structural uncertainty: In the case where the bottom 
scale model is flexible, or if multiple calibrations of the model are given, the structure of the bottom 
scale model can be included in the uncertainty measurement. For the case of the multiple point 
estimates, each point can be given a density that corresponds to the objective function below, based 
on the calibration space loss function from 7). 
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     * *Obj exp Lossk kA  θ θ   

Here A is a normalizing coefficient valued such that the sum of the objective function values is 1 for 

the domain of *θ . 
If the bottom scale model can be calibrated in the analysis, the procedure of steps 1-6 can be 
reiterated on the bottom scale model -- describing the bottom scale model as a black box as well. The 
single loss function in mesoscale calibration parameter space takes the place of the per datum loss 
functions of step 4, in addition to those of data on the length scale of this second model. This places 
more of a burden on the regression model, so a more complicated treatment might be necessary to 
capture the relationship to a sufficient level of fidelity. Once the objective function is defined on the 
bottom scale calibration parameter space, a sampling method may be used with resampling at the 
mesoscale model to give a representation of the Top-down bottom-up uncertainty of the model chain 
structure.  

a. This may also be considered as a method for multiscale model calibration.  

1. Interstitial Loop/Dislocation Interactions in Irradiated Fe Alloys 
Two papers are planned for this sub-problem. One paper will be an uncertainty propagation analysis of 
the MD to crystal plasticity treatment of self-interstitial atom loops focusing on the uncertainty related to 
the choice of interatomic potential. The second paper will be a Top-down and bottom-up (TDBU) 
uncertainty analysis, applying the iterative approach described above 

 
a) Black box model 

Irradiation defect Crystal Plasticity model (modified from Patra and McDowell 2013) with a Friedel 

Kroupa Hirsch hardening treatment  

 

b) Bottom-up information (parameter scale data) 

Atomistic simulation of interstitial loop – dislocation interactions (Zhi Zeng) in terms of critical 

resolved shear stress to pass through the loop 

c) Top-down information (output scale data) 

Irradiation effects on hardening behavior (Maloy et al 2001) 

d) Key calibration parameters of the model 

Obstacle strength of interstitial loops as function of loop size and relative orientation (formulation 

TBD) 

2. Void Nucleation, Growth and Interactions with Dislocations in Irradiated Fe Alloys 
Two papers are planned for this sub-problem as well. The first will be a TDBU uncertainty analysis of 
multiple rate law models for void nucleation and growth. Following that analysis, a second paper will 
include an uncertainty propagation analysis through a crystal plasticity model.   
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3. Bottom-Up and Top-Down Uncertainty in Informing Crystal Plasticity for BCC Systems 
Two papers have been planned. One paper will demonstrate and document the structural uncertainty 
quantification process detailed above, using the sub-problem as an example. An additional paper will 
incorporate work from Hale et al in order to test the ability of the approach to quantify the relative quality 
of scale bridging of one model chain to another.  

 

Sub-problem 1: Interstitial Loop/Dislocation Interactions in Irradiated Fe Alloys 

 
Students: Zhi Zeng and Aaron Tallman 
Faculty: Ting Zhu, David McDowell, and Yan Wang 
 
Interstitial Loops have been found in irradiated BCC Fe alloys, and provide barriers to dislocation glide, 
and therefore plastic deformation. As the nature of these loops is explored, there is evidence that there 
are likely two distinct types of these loops. One type is found to be predominantly glissile and tends 
towards a hexagon in the {110} planes, with a Burgers vector in the 1/2<111> direction. The other type 
seems to be sessile, and is organized on {100} planes in squares with burgers vectors of <100>. These are 
distinct types which might be formed through separate mechanisms. The two types are thought to also 
have different barrier strengths. Work in this sub-problem is examining the pathways for the formation, 
annihilation, and displacement of interstitial loops, with the intent to inform continuum level models of 
crystal plasticity with regard to softening and strain localization. 
 
The clearing of ostensibly sessile interstitial loops formed by aggregation of interstitials arising from 
knock-on events by virtue of interactions with mobile dislocations is a precursor to forming defect free 
channels that localize slip, lead to irradiation hardening, and compromise ductility of polycrystalline Fe-Cr 
alloys.  The current crystal plasticity model used at higher length scales assumes annihilation of loops 
interacting with mobile dislocations within some capture radius, but the mechanisms are unknown and 
the rate equations have significant model form uncertainty.  This includes the accounting for exchange of 
immobile and mobile dislocations within the dislocation density evolution equations of crystal plasticity.   
 
Simulations models were identified as follows:  

1. MD/NEB simulation of interstitial loop annihilation by orientation to dislocation to determine 
energy barrier of the annihilation 

2. MD/NEB simulation of interstitial loop annihilation by orientation to dislocation to determine 
obstacle strength to dislocation motion 

3. The incorporation of the data from the lower length scale models into Continuum Crystal 
Plasticity model 
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Three collaborative journal articles are planned as an outcome of this sub-problem: 
 

1. Uncertainty Propagation within MD-informed Crystal Plasticity Modeling of Mobile and 
Immobile Interstitial Loops in Irradiated bcc Fe 
Zhi Zeng, Aaron Tallman, Ting Zhu, Yan Wang, David L. McDowell 

2. Top-Down and Bottom-Up Uncertainty Quantification of  MD-informed Crystal Plasticity 
Modeling of Mobile and Immobile Interstitial Loops in Irradiated bcc Fe 
Aaron Tallman, Zhi Zeng, Ting Zhu, Yan Wang, David L. McDowell 

3. Bottom-up and top-down uncertainty quantification of bcc Fe plasticity and dislocation-
interstitial loop interactions 
Aaron E. Tallman, Zhi Zeng, Cameron Sobie, Yan Wang, Laurent Capolungo, Ting Zhu, and David 
L. McDowell 

Representative Modeling and Simulations Exercised in this Sub-Problem: 

 
Atomistic models for the interaction between interstitial loop and single dislocation in BCC Fe have been 
developed. The models include a variety of Burgers vectors, habit planes and slip planes.  
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Fig. 2: Atomistic models of interstitial loops in irradiated BCC Fe. (a) Interstitial loop with burgers vector 
of ½ <111> and habit plane of {110}; (b) Interstitial loop with burgers vector of ½<100> and habit plane 
of {100}; (c) Interstitial loop with burgers vector of ½<100> and habit plane of {110}. 
 
Three typical kinds of interstitial loops that exist in irradiated Fe alloys are recognized and their atomistic 
models have been built [8-11]. The first kind of the interstitial loops is prismatic dislocation loops with 
burgers vector of ½ <111> and habit plane of {110}, as shown in Fig. 1a. These <111>{110} loops have 
hexagonal shapes. They are highly mobile so they can easily be passed by a dislocation. The second kind 
of the interstitial loops is prismatic dislocation loops with Burgers vector of ½<100> and habit plane of 
{100}, as shown in Fig. 2b. These <100>{100} loops have rectangle shapes with each edges lying on {100} 
direction. They are also glissile. The third kind of the interstitial loops is prismatic dislocation loops with 
burgers vector of ½<100> and habit plane of {110}, as shown in Fig. 2c. These <100>{110} loops have 
rhombic shapes. They are sessile. 
 
In order to study the dynamics of a dislocation in association with an SIA loop, a model was developed 
which includes an edge dislocations was and an ½<111>{110} dislocation loop. The x, y and z axes of the 

simulated crystal were oriented along [111], [1̅1̅2]and [11̅0] directions, as shown in Fig. 3.  

 

Fig. 3. Atomistic model of dislocation interstitial loop interaction. 

Periodic boundary conditions were employed in the x and y directions, corresponding to the direction of 
b and the line direction, respectively, and fixed conditions were used across the z boundaries. The 
interstitial loop contains 37 SIAs. The dimensions of the simulation structure are Lx = 29.79nm, Ly = 11.23 
nm and Lz = 30.4 nm. The total number of atoms are 573637. Molecular dynamics simulations are 
performed by LAMMPS. The temperature is maintained at 300K. Three interatomic potentials are used. 
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They are Finnis–Sinclair-type interatomic potential for Fe of Ackland et al. [12], Finnis-Sinclair-type 
interatomic potential for Fe of Mendelev et al. [13] and an EAM potential recently developed by Proville 
et al. [14].  This facilitates consideration of model form uncertainty in addition to the other geometric 
factors associated with dislocation-loop interactions. 

In pursuing the consideration of uncertainty in Interstitial Loop/Dislocation Interactions in Irradiated Fe 
Alloys, we employ both a “black box” model based on prior derived hardening laws and results of atomistic 
simulations.  

d) Black box model 

Material point simulation of Crystal Plasticity Model (Friedel Kroupa Hirsch  hardening with 
separate treatment for loop types) 
 

e) Bottom-up information (parameter scale data) 

Atomistic simulation of interstitial loop – dislocation interactions (Zhi Zeng)  

A comprehensive sensitivity study of dislocation interactions with interstitial loops in irradiated BCC Fe 
was conducted using molecular dynamics simulations.  This study focused on interaction of a ½<111> 
{110} edge dislocation with three typical kinds of prismatic interstitial loops:  

 ½ <111> in habit plane of {110} 

 ½<100> in habit plane of {100} 

 ½<100> in habit plane of {110} 
 
Furthermore, this study covered a variety kinds of the possibilities of edge dislocation encountering 
interstitial loops. The results are discussed below. (include the mechanism of interaction categories 
defined per each data point) 

In molecular dynamics simulations, the Burgers vector of the edge dislocation is ½ <111> and the slip 
plane is  110 . Molecular dynamics simulations compute the critical resolved shear stress necessary to 

drive an edge dislocation past an interstitial loop. Three typical kinds of interstitial loops is studied. For 
each kind, there are different scenarios. The critical resolved shear stress is obtained for every scenario. 

The comprehensive lists of critical resolved shear stresses give the interstitial loop barrier strength as a 
multi-dimensional function of parameters.  

 

1. Interstitial loop with Burgers vector of ½ <111> in habit plane of {110} 

Nine interstitial loops of this kind were identified for interaction with dislocation. These interstitial loops 
have different Burgers vectors and habit planes. These nine loops were identified by considering the 
misorientation between the Burgers vector of edge dislocation and the Burgers vector of the interstitial 
loop, the angle between habit plane and Burgers vector of edge dislocation, the angle between the slip 
plane and the Burgers vector of interstitial loop, and the angle between the slip plane and habit plane. 
Each loop has three different sizes, corresponding to: 37 SIAs, 99 SIAs and 331 SIAs. They were of 
hexagonal shape with sides of length: 0.82 nm, 1.34 nm and 2.45 nm, respectively. For each interaction 
event, simulations were conducted at three temperatures: 100K, 300K and 450K. For each simulation, 
three interatomic potential are used. The critical resolved shear stress for each case is listed below.  
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Table 1 Critical resolved shear stress to pass ½ <111> {110} type of interstitial loop 
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2. Interstitial loop with Burgers vector of <100> in habit plane of {110} 

Nine interstitial loops of this kind were identified for interaction with dislocations. Each loop corresponds 
to three different sizes: 30 SIAs, 169 SIAs and 331 SIAs. They were of rhombic shape with sides of length: 
1.09 nm, 2.6 nm and 3.6 nm, respectively. For each interaction event, simulations were conducted in three 
temperatures: 100K, 300K and 450K. The critical resolved shear stress for each case is listed below: 

Table 2 Critical resolved shear stress to pass <100> {110} type of interstitial loop 
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3. Interstitial loop with Burgers vector of <100> in habit plane of {100} 

Six interstitial loops of this kind were identified for interactions with dislocation. Each loop has three 
different sizes: 30 SIAs, 169 SIAs and 331 SIAs. They were of square shape with sides of length: 1.09 nm, 
2.6 nm and 3.6 nm, respectively. For each interaction event, simulations were conducted in three 
temperatures: 100K, 300K and 450K. The critical resolved shear stress for each case is listed below. 

Table 3 Critical resolved shear stress to pass <100> {100} type of interstitial loop 
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f) Top-down information (output scale data) 

Propagation of uncertainty from multiple options for interatomic potential will be measured by 
formulating a model that can accept the MD findings into constitutive equations, including the potential 
for multiple mechanisms for interactions based on loop sizes. This linkage needs to be consistent in 
assumption and form for all three interatomic potentials’ results, so as to allow for the model form to 
remain constant, while still being able to calibrate to differences in the estimated mechanistic transition 
size of loops.  The top-down continuum model is a dispersed barrier hardening model employed at the 
slip system level. 

 

Sub-problem 2: Void Nucleation, Growth and Interactions with Dislocations in Irradiated Fe Alloys 

 
Students: Richard Hoffman Alex Moore, and Aaron Tallman 
Faculty: Chaitanya Deo and David McDowell 
 
Void growth in irradiated materials is an important factor in determination of deformation mechanics. 
While alloy choices can largely mitigate the size and number of voids in an irradiated bcc iron alloy, some 
voids remain. The treatment of these obstacles may present a source of variance in the predictions of a 
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multiscale model. Investigation has been planned and is underway concerning the inclusion of voids in 
the modeling of bcc iron alloys.  A configuration of this sub-problem appears in the chart below. 
 
Simulation models for the second sub-problem are defined as follows: 

1. MD/NEB simulation of the binding energy of voids 
2. MD/NEB simulation of voids to inform the migration rate of vacancies 
3. NEB simulation of void-dislocation interactions to determine the barrier strength of voids to 

dislocation glide 
4. KMC simulation of void formation to inform values for void populations and size distributions 
5. Incorporation of these data in a constitutive relation between void population and deformation 

in the continuum model 
 
Bcc Fe irradiated at various temperatures has been found to contain voids.  A current multiscale model of 
this material has not incorporated void nucleation into the analysis of its crystal plasticity.  Voids and micro 
voids have significant effects on the deformation of metal crystals.  The incorporation of void nucleation 
into a model of crystal plasticity is a necessary step in the development of a fully comprehensive analysis 
of the material.  It also presents an opportunity to call upon lower length scale simulations to inform the 
CCP model’s treatment of unit processes. 
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The KMC modeling used to inform crystal plasticity modeling addresses both KMC and Crystal Plasticity 
uncertainty sources and representation in Task 1.  Professor C. Deo‘s work has focused on addressing 
uncertainty in Kinetic Monte Carlo (KMC) methods, including dependence on rate catalog models.  This 
work has compared different inputs to KMC simulations in order to determine how changes in the rate 
catalog may affect accuracy and results.   
 
Several journal articles are planned as an outcome of this sub-problem: 

 

 Sensitivity analysis of Point Defect Balance Equations 
Trey Hoffman, Aaron Tallman, Chaitanya Deo, David McDowell 

 Structural Uncertainty Quantification in Rate Law simulation of bcc metal irradiation-void 

nucleation and growth 

Trey Hoffman, Aaron Tallman, Alex Moore, Chaitanya Deo, David L. McDowell 

 Rate Law simulation of bcc Fe irradiation-void nucleation and growth, with Uncertainty 

Propagation through Crystal Plasticity modeling of irradiated bcc Fe 

Aaron Tallman, Trey Hoffman, Alex Moore, Yan Wang, Chaitanya Deo, David L. McDowell 

Representative Modeling and Simulations Exercised in this Sub-Problem: 

 
Sensitivity analysis of Kinetic Monte Carlo simulations of diffusivity – A defect diffusion model under 
radiation damage has been developed and is being validated.  Point defect balance equations are 
simulated.  The time evolution of the number densities of the interstitals ni(t) and vacancies nv(t) is given 
by the coupled nonlinear equations 

 
where the first term on right is the production term and each negative term on right is a loss terms for 
the sinks.  These relations may be interpreted according to 
  

rate of defects = production rate – recombination rate – sink annihilation rate 
 
We employ SPPARKS with defect production, recombination and annihilation rates to get point defect 
balance evolution over multiple length and time scales. 

3

formalism. Before the advent of large scale computer
simulat ions, this method represented the only viable the-
oret ical approach for simulat ing long t ime radiat ion dam-
age evolut ion. The rate equat ions can be solved by di-
rect numerical integrat ion or direct analysis in limit ing
cases. In the minimal model discussed above, the t ime
evolut ion of the number densit ies of the interst itals ni (t)
and vacancies nv (t) is given by the coupled nonlinear
equat ions7,19,23

dn i

dt
= σF − κv ωi v ni − κ i ωvi nv − κ i sωi sni

dnv

dt
= σF − κv ωi v ni − κ i ωvi nv − κvsωvsnv (1)

Defect pairs are added to the populat ion at a rate pro-
port ional to the part icle flux F and a cross-sect ion σ.
Loss can occur through a diffusing interst it ial recombin-
ing with a vacancy with rate ωi v and a diffusing vacancy
recombining with an interst it ial with rate ωvi . The re-
combinat ion rates are all proport ional to the diffusion
constant of the moving defect , but depend on the di-
mensionality of the diffusion process. κ i and κv are di-
mensionless capture numbers that represent the spat ial
extent of the defects and their effect ive (possibly long
ranged) interact ions. Losses can also occur through ab-
sorpt ion at sinks with rates ωi s and ωvs and correspond-
ing capture numbers κ i s and κ i v for interst it ials and va-
cancies, respect ively. An alternat ive representat ion of
Eqs. (1) is to define sink strengths k2

x via the relat ion
k2

x D x = κx ωx , where the subscript x refers to any of the
combinat ion of indices used above.

The encounter rates of the defects are given by the
number of dist inct sites visited by a random walker
per unit t ime. Since the mean squared displacement
⟨R2⟩ = l2N for a random walk with step length l , the
number of sites visited is s = [⟨R2⟩/ l2]1/ 2 ∼ N 1/ 2 in one
dimension. By contrast , a detailed analysis of random
walks on three-dimensional cubic lat t ices shows that a
random walker visits O(N ) dist inct sites after N hops.
For a given density of target sites n, the typical collision
t ime τc is given by the condit ion Dτc/ a2 = 1/ n (3D)
and (Dτc/ a2)1/ 2 = 1/ n (1D), from which we deduce the
encounter rates

ω3D ∼ nD / a2 and ω1D ∼ n2D/ a2. (2)

In a similar manner, the capture numbers κ are also af-
fected by the dimensionality of the random walk. Assum-
ing ideal spherical defects of linear dimension r , κ ∼ r / a
for a 3D random walk in a mean-field approximat ion20,
but in general, capture numbers can also depend on
spat ial fluctuat ions and dose. For a 1D random walk,
the scaling with defect size becomes much stronger21,
κ ∼ (r / a)4.

These expressions apply to st rict ly 1D or 3D random
walks. As discussed in the Int roduct ion, we encounter
an intermediate case in bcc metals, where rotat ions in-
terrupt 1D random walks and lead to 3D trajectories.

The encounter rate of this random walk must , therefore,
be larger than the purely 1D case. For a rotat ion rate
γr , the random walker performs on average D/ γr a2 hops
along a part icular direct ion before rotat ing into a new
direct ion. There are γr τ of these segments during t ime
τ . The mixed 1D/ 3D collision t ime thus follows from the
condit ion (D / γr a2)1/ 2γr τc = 1/ n, which implies

ω1D / 3D = ω3D γr a2/ D (3)

The mixed encounter rate ω1D / 3D scales like the 3D en-
counter rateω3D , but is reduced by the squareroot of the
rat io of the number of rotat ions to hops. This react ion
rate has also been derived in ref. 21. This work views
the kinet ics in the intermediate 1D/ 3D regime as an en-
hanced 1D react ion rate, but the result ing expressions
agree up to numerical prefactors. These authors also
showed that the size dependence of the mixed capture
number κ ∼ (r / a)2, and ref. 22 provides an interpolat ion
formula between the limit ing casesusing a cont inuum de-
script ion. While theencounter ratesand react ion kinet ics
of random walkers decrease when the dimensionality of
the random walk changes from three to one, the diffusiv-
ity does not , since the mean squared displacement of a
random walk of N steps of length l is ⟨R(N )2⟩ = l2N
independent of dimensionality.

Note that these encounter rates are derived under the
assumpt ion of collisions with a stat ionary target . The
case of several colliding 1D random walkers becomes
equivalent to a 3D random walk because, from the rest
frame of a given walker, the other walkers appear to be
execut ing a 3D random walk. This case would be rele-
vant for describing the collisions of interst it ials with each
other, but not with the vacancies or sinks.

Insert ing these encounter rates into Eqs. (1), assuming
mixed 1D/ 3D encounter for diffusing interst it ials, yields
rate eqat ions of the form

dn i

dt
= σF − ni nv (κv βD i / a2 − κ i Dv / a2)

− κ i snsni βD i / a2 (4)
dnv

dt
= σF − ni nv (κv βD i / a2 − κ i Dv / a2)

− κvsnsnvD v / a2, (5)

whereβ = γr a2/ D i isa dimensionlessrat io that describes
the relat ive frequency of dumbbell rotat ions and diffu-
sional hops.

C. Sim ple scal ing analysis

We now specialize these results to the common case
of bcc metals, where γr a2/ D i ≪ 1 and D i / D v ≫ 1.
Before performing the kMC simulat ions and solving the
full rateequat ionsnumerically, it is inst ruct ive to analyse
the limit ing behaviors of this system23. Init itally, there
are no defects in the metal, and only the first term in the
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Fig. 4.    Results of simulations where the point defect balance is shown,  
allowing immobile vacancy clusters to form. 

 
2. Incorporation of void nucleation information in crystal plasticity framework – Void nucleation has been 
simulated with KMC calculations.  Parameters from MD that go into the void nucleation rate will be 
identified and these will then be used to calculate void nucleation in bcc Fe.  This information will be 
upscaled to the Crystal Plasticity framework.  Epistemic and Aleatory uncertainties will be identified in the 
MD and the rate theory/KMC codes. 
 
3. Uncertainty quantification of calculations of void energetics with different interatomic potentials (EAM, 
MEAM) -  Two interatomic potentials (EAM and MEAM) have beem used to calculate the formation energy 
of voids of various sizes at various temperatures.  The differences between the two potentials will be 
identified and the aleatory and epistemic uncertainties is being identified.   
 
As materials modeling efforts begin to incorporate multiple models in the analysis of a single material, 
Uncertainty Quantification, or UQ, is becoming a powerful tool in coordinating the information exchanged 
between these models. The multi-scale modeling of voids in irradiated bcc Fe presents an opportunity to 
demonstrate uses of UQ. Top-Down and Bottom-Up model form UQ is performed on the kMC simulation 
of void nucleation and growth in irradiated bcc Fe. These UQ results are used for a study of uncertainty 
propagation in a continuum Crystal Plasticity model.  

The KMC code is a modification of the diffusion model contained in SPPARKS{citation for SPPARKS}. The 
chance of an event occurring is based on an Arhenius type probability: R = exp(-E/kT). 

The code is modified to allow for the treatment of different defect types separately. Modifications were 
also made to account for the irradiation process. At prescribed times based on the irradiation rate. In 
addition sinks can be modeled in one of two ways: as physical objects interspersed on the lattice or a 
statistical probability of defect elimination based on the given sink concentration. Early analysis suggests 
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these two methods are equivalent and thus the simpler statistical approach is generally chosen. Each of 
the types of defects involved in the simulation is treated differently. In the discussion of defects below a 
collision refers to the result of a defect jumping to a lattice site next to another defect 

Vacancies are the simplest of defects to treat in the KMC model they move in three dimensions through 
a series of diffusive jumps, each of which is controlled by a single energy barrier, EVM. They can be removed 
from the simulation in one of three ways: collision with an interstitial resulting in elimination of the pair, 
statistical elimination to simulate contact with a sink, and a collision with an n sized void thus forming a 
part of an n +1 sized void. The vacancies can be formed through three distinct processes: irradiation 
induced pair creation, separation from an n sized void resulting in an n-1 sized void and a single vacancy, 
and interstitial collision with a void of size 2 resulting in a single vacancy remaining. 

In this model voids are treated a group of vacancies that may leave the void by overcoming a barrier if 
there is an available neighboring site. The barrier for leaving the void is found through atomistic 
simulations and varies based on the size of the void, E(x)V + EVM. Thus the members and size of a void must 
be followed throughout the simulation resulting in the majority of the added computational complexity 
of the simulation. Voids are created and grow as a result of vacancies colliding with a vacancy or a void 
respectively. They are reduced in size or destroyed through the above process of vacancies leaving the 
void and from collision of interstitials with the void. 

Interstitials simulation is composed of two parts. In order to approximate the 1D motion of interstitials 
through the crystal, interstitials have two types of motion. The first is a diffusive jump in the chosen 111 
direction and the second is a rotation into another 111 direction. Each of these jumps types is given an 
energy associated with it: EIM and ER, respectively.  We consider parametrically the role of 

 Diffusivity of interstitials 

 Diffusivity of vacancies 

 Binding energy of voids  
 
Atomistic simulations of iron voids will be able to obtain some of the base energetic properties of voids, 
which are not directly or easily obtainable using experimental methods.  The energetics of the simulated 
void system can be coupled with larger scale simulations in order to bridge the simulation gap from the 
atomistic scale to the continuum scale. 
The molecular statics/dynamics energetics of the iron voids are not enough to fully couple the atomistic 
and the crystal plasticity simulations. While voids can be added to the defect rate balance equations found 
in crystal plasticity, typically sink strengths may be required. The issue lies in the fact that the sink strength 
is not directly obtainable from the void energetics, but would require an elastic field study on the local 
point defects. However, it may be possible for the energetics to be incorporated via vacancy emission 
efficiency as seen in Woo and Singh in 1992 (Woo, C. H., and B. N. Singh. "Production bias due to clustering 
of point defects in irradiation-induced cascades." Philosophical Magazine A 65.4 (1992): 889-912), if 
additional assumptions are made.  
 
However the vacancy formation energy does play a direct role in determining the diffusivity of vacancies 
and thus the efficiency with which point defects are captured at sinks or mutually annihilate. 
Further investigated was the influence of interatomic potentials on the formation energy of vacancies and 
vacancy clusters.  Molecular dynamics simulations were conducted with four different interatomic 
potentials as shown in Table 4. 
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Table 4: Semi-empirical Fe Potentials 

Potential # Who 
Developed 

Type Why Developed 

1 Mendelev et al. 
2003 (1) 

EAM Developed for both crystalline and liquid Fe 

2 Lee et al. 2001 
(2) 

MEAM-0 Developed to mimic 0K elastic constants and 
formation energies of Fe at 0K 

3 Lee et al. 2012 
(3) 

MEAM-T Developed to mimic correct structural phase 
behavior of Fe with respect to temperature 

4 Lee et al. 2012 
(3) 

MEAM-P Developed to mimic correct structural phase 
behavior of Fe with respect to pressure 

 

In each case, In order to estimate the void stability and formation energy, a periodic super-cell consisting 
of 10x10x10 body centered cubic (BCC) unit-cells (2000 atoms in the defect free system) was simulated.  
We performed energy minimization in order to achieve the energy of a perfect BCC lattice. 
Then in order to calculate the defect formation energy of a vacancy, an atom was removed from the 
perfect bcc lattice creating a vacancy in the system.  This new system with the vacancy then underwent 
another energy minimization to find the relaxed structure.  Then the vacancy formation energy can be 
calculated using these relaxed structure energies: 

𝐸𝑓,𝑣𝑎𝑐 = 𝐸(𝑛−1) −
𝑛 − 1

𝑛
𝐸𝑛 

 
The formation energy of a void can be calculated similar to that of a vacancy, but now you have multiple 
clustered vacancies creating a void.  The formation energy of a void can be calculated by: 
 

𝐸𝑓,𝑣𝑜𝑖𝑑(𝑥) = 𝐸(𝑛−𝑥) −
𝑛 − 𝑥

𝑛
𝐸𝑛 

 
where x is the number of vacancies in the void.   
 
The formation energies can then be used to find the vacancy binding energy to an existing void.  The 
binding energy can be obtained by 
 

𝐵𝐸𝑣𝑎𝑐(𝑥) = 𝐸𝑓,𝑣𝑜𝑖𝑑(𝑥 − 1) + 𝐸𝑓,𝑣𝑎𝑐−𝐸𝑓,𝑣𝑜𝑖𝑑(𝑥) 

 
where x is the size of the existing void.  This binding energy of the vacancy to a void can be directly 
incorporated into the larger scale kinetic monte-carlo (KMC) simulations. 
 
In addition, the volumetric swelling percentage can also be calculated using the equation  
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∆𝑉

𝑉0
=
(𝑉𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑛𝑣𝑎𝑐𝑉𝑎𝑡𝑜𝑚) − 𝑉0

𝑉0
 

 
where Vsystem is total volume of system with a void, nvac is number of vacancies that constitute the void, 
Vatom is the volume per atom in a defect free system, and V0 is the volume of pure system. 
 
We can use the relationship ΔV/V = 4/3𝜋 R3ρV  to determine the amount of swelling, where R is the average 
void size and ρV is the void density. We can get both of these values from a completed KMC simulation.  
Using these potentials, we can see the influence of model form on vacancy formation and migration 
energies (Table 5), as well as void formation energy  (Fig. 5) and vacancy binding energies. 
 

Table 5: Vacancy Formation Energy and Vacancy Migration Energy Comparison 

Property Experimental DFT MEAM-P MEAM-T 

Vacancy Formation 
Energy 

1.53, 2.0 1.95, 2.18 1.65 1.6 

Vacancy Migration 
Energy 

0.55 0.65 0.14 0.22 

 
Both the MEAM-P and MEAM-T potentials perform most unsatisfactorily for self-diffusion, significantly 
underestimating their vacancy migration energies, which are respectively only about 20% and 40% of the 
experimental value.   
 
Figure 5 shows the void formation energy for the three potentials namely the EAM, MEAM-T and the 
MEAM-P.  The formation energy difference between the three potentials can be seen in the figure above.  
The MEAM-0 potential was found to be unstable after the introduction of defects and could not be used.  
The epistemic uncertainty from the differing semi-empirical potential used in a 35 vacancy void is seen to 
be as large as approximately 10 eV.  Each semi-empirical potential formation energy versus number of 
vacancies in the void was fit to a power law equation.  The power law fit has been used by previous 
simulations and been shown to work reasonably well. 
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Fig. 5: Power law fit of the Void Formation Energy for the EAM, MEAM-T, and MEAM-P Potentials. 

 

 

Sub-problem 3: Bottom-Up and Top-Down Uncertainty in Informing Crystal Plasticity for BCC Systems 
 
Students: Aaron Tallman 
Faculty: Ting Zhu, Yan Wang and David McDowell 
  
While the previous subproblems concern the use of MD and KMC to strengthen the predictions made by 
the CCP model, this subproblem addresses a case where the information travels both up and down the 
length scale. This case examines the glide of dislocations, and it uses information from MD to inform the 
kink-pair nucleation mechanism, and experimental measurements are used to inform the yield criterion 
used in the flow rule. Within the model framework, this ability to coordinate information from various 
sources is being pursued.  A method for measuring the uncertainty endemic to model form is being 
developed and applied to a Top-down and Bottom-up Crystal Plasticity model of bcc Fe. Forward and 
Inverse UQ approaches are used in combination to measure the uncertainty related to the given model’s 
performance in bridging two sources of information across time/length scale domains. 
 
The mechanisms under investigation in this sub-problem are kink-pair nucleation and the non-Schmid 
behavior related to the initial yield criterion.  An initial configuration of this sub-problem appears in the 
chart below. 
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Experimental and simulation models for this sub-problem are being pursued as follows: 

1. NEB simulation of kink-pair nucleation to inform the estimation of  kink-pair activation energy 
2. Incorporation of the kink pair activation energy in a flow rule to be used with CCP modeling 
3. Experimental measurement of yield criterion in the material in order to inform non-Schmid 

coefficient values 
4. Incorporation of non-Schmid coefficients in CCP model to account for non-Schmid behavior 

 
In BCC metals, the cores of dislocations must be constricted to a single glide plane in order to become 
glissile.  In irradiated materials, the high concentration of interstitials they contain are expected to have 
an effect on this core constriction.  The relation between the interstitial concentration and the effects of 
core spreading must be identified in atomistic simulations.  Atomistic simulations are being pursued 
regarding finite temperature dislocation core spreading coupled with interstitials (Zhi Zeng and Sankar 
Narayanan, advised by T. Zhu). 
 
Incorporation of these effects into the yield criteria of crystal plasticity is also being pursued (Aaron 
Tallman, advised by D.L. McDowell and Y. Wang).  We will employ continuum crystal plasticity constitutive 
equations to relate intersitial concentration to the values of the Non-Schmid coefficients in the slip system 
level yield relations. 
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The KMC modeling used to inform crystal plasticity modeling addresses both KMC and Crystal Plasticity 
uncertainty sources and representation in Task 1.  PhD student Trey Hoffmann presented “KMC simulation 
of diffusion in fluorite lattice” at Multiscale Modeling and Simulation of Nuclear Fuel (MMSNF) in Chicago, 
IL in October 2013. 
 
Non-Schmid effects on dislocation core constriction were not considered in previous versions of the 
crystal plasticity model for irradiated Fe-based alloys.  Recent atomistic simulations within our team based 
on an improved interatomic potential have shed light on new understanding of mobility of screw 
dislocations based on coordinated kink-pair formation (work done by Sankar Narayanan, advised by T. 
Zhu), which does not rely on the notion of dislocation core spreading.  On the other hand, based on top-
down fitting single crystal and polycrystal experimental data on laboratory scale specimens as a function 
of strain rate and temperature, Anirban Patra (advised by D.L. McDowell) has found that even at room 
temperature, the Non Schmid stresses have appreciable asymmetry effects and a phenomenological core 
spreading model (following the earlier works of Vitek and Bassani) is a key ingredient.  Hence, there is 
considerable uncertainty regarding the physics (nanoscale or mesoscale) that governs core spreading 
(non-Schmid) effects on yield of BCC crystals as a function of temperature and how to best use a combined 
bottom-up and top-down strategy to estimate both model form and model parameters.  We have set the 
stage for this uncertainty sub-problem by conducting comprehensive efforts in using both atomistics-
based, bottom-up simulations (Narayanan et al.) and top-down experimental approaches (Patra et al.), as 
in the following archival journal articles:   
 

 Narayanan, S., McDowell, D.L., and Zhu, T., “Crystal Plasticity Model for BCC Iron Atomistically 
Informed by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocations,” Journal of the 
Mechanics and Physics of Solids, Vol. 65, 2014, pp. 54-68. 

 Patra, A., Zhu, T. and McDowell, D.L., “Constitutive equations for modeling non-Schmid effects in 
single crystal bcc-Fe at low and ambient temperatures,” Int. J. Plasticity, Vol. 59, 2014, pp. 1-14. 

 
Both approaches have been used to establish crystal plasticity models of somewhat different model form 
and different values of model parameters for the same phenomena.  This sub-problem hence provides a 
potentially very fruitful opportunity for multiscale uncertainty quantification and management.   This sub-
problem focuses on the crystal plasticity aspect of Task 1 – Uncertainty sources and representation, while 
also involving aspects of Task 1, MD - Uncertainty sources and representation in models. 
 
Zhi Zeng  has pursued unit process Nudged Elastic Band modeling to quantify the effects of point defect, 
defect cluster, free surface and grain boundary on energy barriers of screw dislocation migration. These 
data would provide the quantitative atomistic input into the uncertainty sub-problem sensitivity studies 
in the third year of the program.  In addition, we continue to perform the crystal plasticity modeling to 
study the uncertainty effects of grain size and spatial distribution on the yield strength, strain hardening 
and ductility. 

 
 

Task 1. Crystal plasticity – uncertainty sources and representation 
 
Uncertainty sub-problems 1-3 defined in the Task 1- ab initio, MD, KMC sub-task above relate directly to 
informing crystal plasticity.  Sub-problem 3 considers multiscale aspects from both bottom-up and top-
down perspectives; a partial listing of the associated uncertainty sources appears below for each class of 
approach.  As a component of the crystal plasticity work, T. Zhu is pursuing sensitivity analysis of grain 
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microstructures in terms of the stress-strain behavior of polycrystalline bcc Fe (e.g., uniform vs gradient 
grain sizes) by comparing molecular dynamics and crystal plasticity simulations. 
 
As an example of sources of uncertainty sources in a sub-problem we outline below the sources of 
uncertainty for bottom-up and top-down pathways in uncertainty sub-problem 3 on BCC Fe crystal 
plasticity. 
 
I. Bottom-up approach (Atomistics to Crystal Plasticity):  
 
Approach 1: Vitek-Bassani-Groger [15-17]: 

  Estimation of Peierls stress from 2D atomistic simulations and computing the effect of twinning-
antitwinning asymmetry and non-glide stresses: 

 Numerical algorithm used for energy minimization. 

 Convergence criterion employed in incremental-loading, molecular-statics simulation  

 Effect of boundary conditions employed. 

 Inter-atomic potential: Single or double humped; degenerate or non-degenerate dislocation core.  
 
Approach 2: Narayanan-McDowell-Zhu [18]: 

 Estimation of kinkpair activation energy via 3D Nudged Elastic Band (NEB) calculations:  

 Methodology for NEB implementation at finite stresses: Stress-controlled/Strain-controlled 
loading scheme.  

 The effect of the atomistic simulation results rendering method, that brings in uncertainty into 
the estimation of the kink separation distance (a critical quantity that is used in the atomistic-
continuum coupling). 

 Accounting for dislocation density effect. 

 Estimation of the numerical value of athermal resistance from atomistic computations.  

 Inter-atomic potential: Accuracy of the EAM potential employed. 

 Possible effects of twinning-antitwinning asymmetry and non-glide stresses, on kinkpair 
activation energy.  

 Effect of zero-point crystalline vibrations (quantum effects) on kinkpair activation energy for low-
temperatures.  

 
II. Top-down approach (Experiments/Crystal Plasticity-to-Atomistics):  
 
Approach 1: Patra-Zhu-McDowell [19-20]: 
 

 Fitting of data points to exponential decay function for the temperature dependent non-Schmid 
coefficients 

 Disagreement among experimental data sets 

 Disagreement between experimental data and atomistic calculations regarding appropriate 
mechanisms and model forms 
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Comments on Likelihood Based UQ Method with Weighted Sampling 

 

The likelihood based UQ method uses deterministic models in tandem with weighted sampling.  The 
method can be characterized as a Structural Uncertainty Quantification technique. It is distinct in that it 
allows the model of interest to be informed by information in both a bottom-up and a top-down fashion.  

The method can be used to evaluate the ability of a model to connect pieces of information. This is the 
simplest conceptualization of the method’s purpose. By taking advantage of information at both the 
output level (top-down) and the input level (bottom-up), the method can test the degree to which these 
sources can be made to agree within the context of the model. The model serves in the role of a bridge 
between length scales. 

Uncertain parameters and the assumed black box form of the model prevent a direct approach to the 
structural uncertainty.  

A sampling based method, which executes the model over a sampling of different parameter values gives 
a more complete picture of uncertainty versus a single run on optimized parameter values.  The model, if 
deterministic, requires that a single value be used for each parameter. This requirement holds for any 
single iteration of the model or any single run of the model, but different applications of the same model 
may favor different parameter values. Within a certain range, the parameters of the model can be varied 
without altering or violating the structural assumptions of the model. However, the output of the model 
is altered by these variations. Information that is not inherently captured by the model structure can be 
reflected within the model through the use of parameter values that maximize the agreement of the 
model and the additional information. The assumptions contained in the model form support the 
complete set of permutations of parameters, so to evaluate those assumptions the entire set of 
permutations must be included. In order to establish a connection between the structure of the model 
and validating or training data, the support from training data across parameter space must be evaluated. 
Therefore, the range of the uncertain parameters is included, and then weighted in a way that reflects a 
connection to a specific set of training data. It is also necessary to include the uncertainty of the training 
data as a consideration in this method in order to draw conclusions about the structural uncertainty.  

The weighting referred to previously is better described as a likelihood based density estimate. A 
likelihood in a statistical model is tied to a parameter of the model. It denotes the degree to which the 
observed data supports the inference of a given value for that parameter. The weighting is indeed an 
estimate, because unlike a simple statistical model, the material models used here are separated from 
the validation data by a degree of inadequacy (which must be estimated).  

Specific rudimentary numerical techniques are used here [least-squares linear regression modeling, 
polynomial interpolation in the surrogate model, orthogonal sampling methods], despite the presence of 
widely used methods of more sophistication [kriging, non-sampling methods such as orthogonal 
polynomial expansions, etc.]. This work uses the simplest workable techniques that are available as a 
matter of expediency. Future work, should this method prove viable, will have many avenues to explore 
for improving the choice of techniques made use of by this process. 

Structure of the modeling effort and stepwise UQ procedure: 

In mapping this method to a problem, it is helpful to hold the modeling effort of interest against the 
framework of this method. In doing so, the following key ingredients must be identified. 

a) Black box model 
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b) Bottom-up information (parameter scale data) 
c) Top-down information (output scale data) 
d) Key calibration parameters of the model (with potential physical reinterpretations) 

 
The absence of any of these four items would prevent the application of this technique. Additionally, the 
results of this technique will be specific to each combination of these four ingredients.  

The individual steps of the procedure are as follows. 

1) Identification of a Candidate model 

2) Construction of the Black Box with theoretical boundaries for calibration parameters 
3) Initial Sampling of Calibration Space 
4) Per Datum Loss Functions from Likelihood 
5) Mismatch of model structure from data as yardstick for level of discrimination in calibration space  
6) Likelihood estimate across theoretically bounded calibration parameter space as a top-down 

structural uncertainty measurement 
7) Loss function in calibration space  
8) Single Bottom-up model (without BU calibration) case, x   discrepancy  
9) Multi (or with calibration) Bottom-up case, TDBU structural uncertainty 
 

Task 2 Sources of uncertainty in model chains/linkages: Uncertainty Sub-
Problems 
 
Dave McDowell and Yan Wang 
Students: Aaron Tallman and Joel Blumer 
 
Efforts focused on both further constitutive model development and framing of uncertainty sub-
problems.  The layout of uncertainty problems in terms of sources of uncertainty in model chains/linkages 
was completed in Q8. 
 
Uncertainty Sub-Problems 
 
The focus on uncertainty sub-problems shifted in the second year from one on sources of uncertainty 
(Task 1, described earlier) to configuration of the multiscale modeling chains (Task 2).  Much progress was 
made in Q6-Q8 on assembling uncertainty sub-problems.  The third year will focus on configuration of the 
uncertainty sub-problems to support pursuit of sensitivity studies and uncertainty quantification and 
propagation (Task 3). 
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Subproblem 3: Bottom-Up and Top-Down Uncertainty in Informing Crystal Plasticity for BCC Systems 
 
Calibration Based Structural Uncertainty Approach 

This single Bottom-up model (without BU calibration) case, x   discrepancy is the characterization of 

the top-down and bottom-up uncertainty. In the case where a single bottom-up model seeks to inform 

the calibration parameter values for the model in the black box, the bottom-up model is first assumed to 

be inflexible. This situation can arise if the bottom-up model cannot be calibrated or if the model results 

are the only information available. In this situation, a top-down and bottom-up uncertainty measure 

cannot be made. Instead, a linkage can be analyzed in terms of the amount of discrepancy that 

accompanies reinterpreting calibration parameters in the mesoscale model as physical parameters 

determined by a bottom scale model. This discrepancy can be found using the loss function described in 

7).  The discrepancy measure can be compared to the value of the loss function for other model cases, 

such as the self-discrepancy (for ˆ   or MLE as connecting data), and the prior discrepancy, measured 

by replacing the objective function to a constant value (reflecting a uniform density in calibration 

parameter space). The prior self-discrepancy may be useful for identifying the effects of the calibration 

boundaries on the loss function.  

The following diagram is a conceptual picture of the modeling scenario. The model inside the black box is 

host to this reinterpretation of parameters.  
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Here, the flow rule is shown with the specific parametric reinterpretations made in the scale bridging 
process. 
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Generalized Interval Probability Theory (GIPT) Based Approach 

Validation of Crystal Plasticity models can be performed using experimental measurements conducted at 
higher length and time scales or from lower length and time scales, such as atomistic simulations of unit 
process mechanisms. Each of these methods has uncertainties involved that can limit the precision and 
certitude of the predictions made by the models once all of the uncertainty inherent in the model and the 
model validation process have been accounted for. In order to make use of all the information available, 
results will be coordinated the from two crystal plasticity models that each use one of the validation 
schemes mentioned previously. 
 
Each individual model needs to be calibrated with data that are imprecise, and for the Top-Down model, 
data on the deformation behavior of Fe from the literature will be analyzed in order to make confidence 
bands, and then the model will be calibrated to both of these idealized curves (top and bottom limits of 
the confidence interval). The Bottom-Up model will be calibrated to the nucleation energy of a kinkpair 
as measured by in-house atomistic modeling. This atomistic modeling has many internal sources of 
uncertainty, and the bottom-up model will be able to run using a confidence interval of values given by 
the model.  
 
The scheme used for coordinating the predictions of these two models is being explored. Sensor Fusion, 
among other statistical modeling methods will be investigated. An ideal solution is to find a method that 
would have the capacity for manual belief to be applied to the weighting of the results of the different 
models. Eventually Generalized Intervals will be incorporated in order to separately treat aleatory and 
epistemic uncertainties between models where possible. 
 
This subproblem will focus on using tested, familiar scientific modeling techniques in tandem with more 
sophisticated statistical and probabilistic modeling methods that may not be commonly associated with 
these fields of study in order to add additional depth to the simulations run in the future.  The powerful 
data analysis techniques used in other data intensive fields can be a useful addition to the data heavy 
work of Uncertainty Quantification. 
 
With regard to sub-problem 3, top-down and bottom-up validation methods are used in tandem to gain 
improved robustness in uncertainty measurements. In the case of study, two crystal plasticity models 
were taken and identified. One model had parameter estimates and validation via comparison with 
different sets of experimental data. The other model employed atomistic simulations to estimate 
parameters.  The predictions of these models in previous work did not account for uncertainty. In the 
work of this past quarter, the uncertainty sources of the two models were measured and a methodology 
was planned for the fusion of these two models that accounts for uncertainty. 
 
Model A: Top-down approach 
Uncertainty at the primary level originates in the measurements used for calibration and validation of the 
model.  By using an interval treatment of uncertainty, two models can be constructed, one fit to the 
minimum values and one fit to the maximum values for the error bars or variability in measurements. In 
this way, the fitting parameters may also convey information related to the uncertainty in the data. 
 

 Patra, A., Zhu, T. and McDowell, D.L., “Constitutive equations for modeling non-Schmid effects in 
single crystal bcc-Fe at low and ambient temperatures,” Int. J. Plasticity, Vol. 59, 2014, pp. 1-14. 
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Model B: Bottom-up approach 
Many parameters in the bottom-up model are based on values either found in literature, or those 
associated with atomistic modeling.  The atomistic simulations contain uncertainty of their own, such as 
the choice and parameters of the EAM interatomic potential.  The model must exercise a design of 
experiments compatible set of simulations in order to establish a rigorous interval for the uncertainty of 
the data. 

 Narayanan, S., McDowell, D.L., and Zhu, T., “Crystal Plasticity Model for BCC Iron Atomistically 
Informed by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocations,” Journal of the 
Mechanics and Physics of Solids, Vol. 65, 2014, pp. 54-68. 

 
 

 
 
 
Concerning Model Form Uncertainty 
 
There is additionally the consideration of model form in the uncertainty quantification process. In the case 
here, this is not the most efficient or “strongest indicator” of actual uncertainty in the model chain. With 
the limitations imposed by finite processing power, prioritizing certain uncertainty sources for analysis 
may offer better results than an “all or nothing” approach. The reasons model form uncertainty will not 
be considered at the present stage for this model are as follows: Bayesian Model Averaging is an 
established method for calculating model form uncertainty, even removing it. This technique is very useful 
for simplistic statistical models. For the present case, the model is not a suitable candidate for this 
method, due to its processing expense and overall complexity. Additionally, the inclusion of scientifically 
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accepted knowledge built into the model might be compromised by BMA. Therefore, although it would 
be possible to address the uncertainty posed by questions such as the specific form to choose for the flow 
rule of model A are not directly addressed. Indeed, these questions may not be necessary if enough 
models are combined into the UQ regime in development. If Model form uncertainty is suspected as a 
large concern, the regime may be used to address this as well.  By simply including the results of different 
forms of the same model (each form as a UQ pair of calibrations) in the final group of candidates.   
Moreover, the premise of our work is to focus on physically based models to the greatest extent possible, 
so the model forms selected embed expert knowledge at the outset.  We view uncertainty of parameter 
estimation and fusion of information from bottom-up and top-down as the most pressing practical aspects 
of the present uncertainty analysis.  
 
Models as Interpreters 
 
Models interpret different sources of information, whether that information is in the form of experimental 
data, simulations on a different length and time scales, or even physical knowledge from scientific 
consensus. These interpreters each introduce different levels of uncertainty. Even the best model, 
however, cannot be more accurate or precise than the information that it is being used to interpret. 
Hence, the notion of a perfect model is elusive. In order to address this limitation, the proposition of using 
multiple models, multiple validation schemes, is essentially the attempt to coordinate a larger amount of 
information to address the quantity of interest.   
 
Pertinence of Information 
 
The pertinence of different information is a question of interest.  Different models may give assenting or 
dissenting predictions. When they dissent, which model is correct? In order to maximize the pertinence 
of the output of the regime as a model system, confidence can be placed on models individually. This can 
also incorporate expert opinion, by means of attenuating the importance of models with predictions that 
seem less correct.  
 
Method of Fusion 
 
The method for fusing the output of these various models and experiments may depend on the values 
being addressed. For the case of these CCP simulations, the stress-strain relationship calculations may be 
combined in a number of ways.  The simplest way would be to use the central limit theorem to synthesize 
the predictions to find a maximum likelihood estimate. This method could also be used to find a 
representative interval as well.  Markov Chain Modeling could be used, if appropriate; however, the 
benefit of the simplest approach is that the predictions of the individual models are intact when 
incorporated into the final result. This makes the diagnosis (and repair) of poorly behaving individual 
models a much easier process. Additionally, as long as the uncertainty methods are performed and the 
Quantity of Interest remains unchanged, new models and therefore new information can be incorporated 
at minimal additional computational cost. Models are run independently; hence, even a network of 
models which each take days to run can be constructed. 
 
Independence of Assumptions 
 
An added benefit of an algebraic post-processing approach is that it allows models for a given process at 
selected length and time scales to remain independent of each other. This is critical if models with 
conflicting assumptions are used in tandem. Their results may be based on conflicting reasoning, but the 
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soundness of the separate models is not compromised by the combination of their results. This is in 
addition to the ease of use of this type of approach. 
 
Summary 
 
An approach to fuse different sources of information is established. The uncertainty of data is quantified 
and passed on through a pair of calibrations of each model. Each model communicates the predicted value 
and approximate uncertainty of its information. The contributors can be weighted according to 
confidence in the model, and the perceived pertinence of the information. If post processing of models 
executed in parallel is employed, contributing models maintain independence, can be included and 
excluded freely at minimal computational cost, and can be minimally invasive to the de facto modeling 
strategy.   
 

Task 2. Uncertainty quantification based on Generalized Interval Probability 
 
Quantifying Aleatory and Epistemic Uncertainties with Generalized Interval Probability Theory (GIPT) 
Student: J. Blumer 
Faculty: Y. Wang and D. McDowell 
  
To be submitted to 
ASME Journal of Verification, Validation & Uncertainty Quantification  
 
A Bayesian Approach for Multiscale Model Validation with Imprecise Probability  
Joel D. Blumer, David L. McDowell, Yan Wang 
Georgia Institute of Technology, Atlanta, GA 30332 
 
Abstract 
To validate multiscale simulation models, it is necessary to consider evidence collected at a length scale 
that is different from the one at which a model predicts. In addition, epistemic and aleatory uncertainties 
need to be distinguished for more robust decision making. In this study, a Bayesian approach with 
generalized interval probability is taken for model parameter validation. A generalized interval Bayes’ rule 
(GIBR) is used to combine the evidence and update belief in the validity of parameters. The sensitivity of 
completeness and soundness for interval range estimation in GIBR is investigated in comparison with 
Monte Carlo sampling. The method is first applied to validate the parameter set for a molecular dynamics 
simulation of defect formation due to radiation. It is then applied to combining the evidence from two 
models of crystal plasticity at different length scales.  
 
Summary of the Study 
Traditionally, sensitivity analysis is performed to assess the impact of epistemic uncertainty for modeling. 
Various methods such as variance-based global sensitivity analysis, local sensitivity analysis, Monte Carlo 
sampling, etc. have been developed. However, extensive computations are typically required in these 
methods to obtain the extent of variation. This prohibits their wide applications in large-scale simulations 
where each run of simulation is already costly. Alternatives such as Dempster-Shafer evidence theory, 
imprecise probability, random set, etc. have been developed to explicitly differentiate aleatory and 
epistemic uncertainty. As an extension of traditional probability theory, these approaches quantify 
uncertainty as a set of probability values. However, estimating the lower and upper bounds of 
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probabilities for probabilistic reasoning requires linear and nonlinear programing and is also 
computationally expensive. 
 
In order to find efficient alternatives to sensitivity analysis to quantify epistemic uncertainty, in this study, 
generalized interval probability is used to represent the two components of uncertainty. A classical 
interval represents a set of real numbers with a pair of lower and upper bounds such as [0.1,0.2]. It can 
be used to quantify uncertainty when an exact value is unknown, but bounding values can be determined, 
for example, truncation errors in modeling and systemic errors in experimental measurement. 
Generalized intervals differ from traditional intervals primarily in that they allow the upper bound to 
precede the lower bound within the interval. In other words, both [0.1,0.2] and [0.2,0.1] are valid 
intervals. Combining generalized interval with probability, generalized interval probability provides 
simplified probabilistic calculus so that calculation and reasoning are much simpler than classical interval 
probability. 
 
The aggregation of uncertain information can be done using Bayes’ rule, where the belief obtained from 
one source (model prediction or experimental observation) is updated with the new evidence from 
another one. A similar Bayesian update approach based on generalized interval Bayes’ rule (GIBR) was 
also proposed for interval-valued probabilities. In this study, the completeness and soundness of GIBR is 
investigated by comparing it with Monte Carlo simulations. A variation range estimation is called complete 
if it includes all possible scenarios and does not underestimate the range. In contrast, the estimation is 
called sound if all included scenarios are possible and the range is not overestimated. In other words, 
soundness denotes that a solution does not include any impossible values, whereas completeness means 
a solution does not exclude any possible values. The GIBR is defined as 
 

 𝑷(𝛾|𝛼) =
𝑷(𝛼|𝛾)∙𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫𝑷(𝛼|𝛾)𝑑𝛾
 (1) 

 
where 𝑷() is a generalized interval probability, and 𝑑𝑢𝑎𝑙 is an operator to switch interval bounds. For 
example, 𝑑𝑢𝑎𝑙[0.1,0.2] = [0.2,0.1] and 𝑑𝑢𝑎𝑙[0.2,0.1] = [0.1,0.2]. Notice that the algebraic form of GIBR 
is very similar to classical Bayes’ rule, except for the application of 𝑑𝑢𝑎𝑙 operator on the interval 
probabilities. It is important to notice that when intervals degenerate to precise real values, GIBR 
converges to classical Bayes’ rule. An application of GIBR is 
 

 𝑷(𝛾|𝛼) =
∫𝑷(𝛼|𝛽)∙𝑷(𝛽|𝛾)𝑑𝛽∙𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫∫𝑷(𝛼|𝛽)∙𝑷(𝛽|𝛾)∙𝑷(𝛾)𝑑𝛽𝑑𝛾
 (2) 

 
where causal relationships among variables are captured. The major advantages of GIBR over other 
definitions of Bayes’ rule for interval probability are the simplicity of calculation without the need of using 
optimization to estimate interval bounds for posteriors as in other approaches and its resemblance to the 
classical Bayes’ rule for ease of use. A logic coherence constraint is typically required when assigning 
interval values to probability, which states that the sum of all interval probabilities within the sample 
space is one (i.e., [1,1]). This constraint is more restrictive than the coherence constraints proposed in 
other forms of imprecise probability. This constraints takes advantage of the algebraic convenience in a 
generalized interval, where proper and improper intervals co-exist. For instance, [0.1,0.2] is proper, 
whereas [0.2,0.1] is improper. The existence of improper intervals allows for reduction of interval range, 
according to Kaucher interval arithmetic. Therefore, it is possible that the sum of proper and improper 
interval probabilities is one. 
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To verify the completeness and soundness of GIBR, Monte Carlo sampling is applied. Figure 6 shows an 
example when numerical values are randomly assigned to Eq. (2). The two solid straight lines indicate the 
bounds of the posterior interval probability estimated by GIBR, in comparison with the histogram of 
posteriors from 1 million Monte Carlo simulation runs of classical Bayes’ rule with priors and likelihoods 
uniformly sampled from the given intervals. The interval estimation from GIBR is sound but not complete. 
As interval priors and likelihoods reduce the interval widths from the original ones (Fig. 6-a) to halves (Fig. 
6-b) and quarters (Fig. 6-c), the completeness improves. The interval widths are 57.19%, 58.72%, and 
59.06% respectively of the widths from Monte Carlo sampling. The majority of Monte Carlo samples (more 
than 90%) are included by the GIBR interval estimates. Normal distributions are also applied in the 
sampling (Fig. 6-d), where 99.45% of samples are included in the interval estimate.  
 

 

Fig. 6: Comparison between interval posterior estimates from GIBR and the ones from Monte Carlo (M.C.) 
simulation where samples are drawn from interval priors and likelihoods. (a) Original prior and likelihood 
widths with samples drawn from uniform distributions (91.73% of M.C. samples are included in GIBR 
interval. GIBR interval width is 57.19% of M.C. width). (b) Halves of original prior and likelihood widths 
width samples drawn from uniform distributions (91.24% of M.C. samples are included in GIBR interval. 
GIBR interval width is 58.72% of M.C. width). (c) Quarters of original prior and likelihood widths with 
samples drawn from uniform distributions (91.05% of M.C. samples are included in GIBR interval. GIBR 
interval width is 59.06% of M.C. width). (d) Original prior and likelihood widths with samples drawn from 
normal distributions (99.45% of M.C. samples are included in GIBR interval. GIBR interval width is 58.23% 
of M.C. width). 
 

Similar to classical Bayes’ rule, the challenge of applying GIBR in information aggregation is when there is 
a lack of information. In the case that no information is available and total ignorance is present, interval 
probability takes an interval value of [0,1]. When a causal relationship is imprecise, interval likelihoods 
are taken. When there is absolutely no information about the causal relationship, [0,1] is assigned. When 
total ignorance is considered in GIBR with [0,1] assignments to likelihoods, it is intuitive that no update is 
obtained without any new information.   
 
To illustrate with a numerical example of multiscale model validation, where molecular dynamics 
simulation models of point defect because of irradiation are validated. Radiation induced swelling 
(Δℓ/𝑙)/𝑛 and resistivity change Δ𝜌/𝑛 are measured at macroscale to compare with the simulation 
predictions at atomistic scale. The posterior of model parameters θ after experimental observations are 
obtained based on GIBR as in  
 

(a) (b) (c) (d) 
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𝑛
|Tm)∙𝑷(Tm|Td)∙𝑷(Td|θ)∙𝑷(θ)]dTddTmdθ

  (3) 

 
where transferred energy Tm and damage threshold Td are used to build causal relationships. Suppose that 
 
𝑷(Tm = 70𝑒𝑉|Td > 70𝑒𝑉) = [0,0],  
𝑷(Tm = 100𝑒𝑉|Td > 70𝑒𝑉) = [0,1],  
𝑷(Tm = 70𝑒𝑉|Td > 70𝑒𝑉) = [1,0],  
𝑷(Td ≤ 70𝑒𝑉|𝜃𝐶) = [0,1], and  
𝑷(Td > 70𝑒𝑉|𝜃𝐶) = [1,0].  
 
The posterior probability is the same as the prior. Total ignorance indicates that causal relationship is 
unknown in the chain of reasoning. No belief update is expected. Monte Carlo sampling however indicates 
the underestimation of the range for posterior in the case of total ignorance. The logic coherence 
constraint is applied in the above example. Arguably the constraint imposed for total ignorance is overly 
restrictive. For three or more possible outcomes from one action, it is difficult to justify that zero 
knowledge about the probability for one outcome would lead to the probability of zero on another. In 
addition, different assignments of [0,0], [0,1], and [1,0] to 𝑷(Tm|Td) lead to different results. Therefore a 
more reasonable assignment is to have all probabilities be [0,1], and the logic coherence constraint should 
not be applied to the case of total ignorance. Experiments showed some improvement of completeness 
when all probabilities are assigned to be [0,1]. 
 
Two models that predict the yield strength of bcc iron are used in a case study for model information 
aggregation.  The first one is a finite element model for dislocation density crystal plasticity that considers 
non-Schmid effects in both crystal orientation and in the tension-compression asymmetry at initial yield, 
whereas the second one is a crystal viscoplasticity model that accounts for temperature-dependence in 
the non-Schmid parameters. The lack of prior knowledge about orientation of the studied system is 
considered as epistemic uncertainty. Therefore interval probabilities are assigned. The aggregation can 
be done via either  
  

 𝑷(𝑦𝑚1|𝑦𝑚2) =
∫𝑷(𝑦𝑚1|𝑡)∙𝑷(𝑡|𝑦𝑚2)𝑑𝑡∙𝑷(𝑦𝑚1)

𝑑𝑢𝑎𝑙 ∫ ∫𝑷(𝑦𝑚1|𝑡)∙𝑷(𝑡|𝑦𝑚2)∙𝑷(𝑦𝑚1)𝑑𝑡𝑑𝑦𝑚1
 (4) 

or 

 𝑷(𝑦𝑚2|𝑦𝑚1) =
∫𝑷(𝑦𝑚2|𝑡)∙𝑷(𝑡|𝑦𝑚1)𝑑𝑡∙𝑷(𝑦𝑚2)

𝑑𝑢𝑎𝑙 ∫ ∫𝑷(𝑦𝑚2|𝑡)∙𝑷(𝑡|𝑦𝑚1)∙𝑷(𝑦𝑚2)𝑑𝑡𝑑𝑦𝑚2
 (5) 

 
with 𝑦𝑚1 and 𝑦𝑚2 as predictions of yield from model 1 and model 2 respectively at temperature t.  The 
results are also sensitively dependent upon the choices of proper and improper intervals during the 
assignments.  
 
Interval-valued Kullback-Leibler (KL) divergence is also proposed to validate model with imprecise 
probability. With interval probabilities 𝒑𝑖’s and 𝒒𝑖’s, interval-valued KL divergence between the two is 
defined as 

 𝑫𝐾𝐿(𝒑|𝒒) = ∑ 𝒑𝑖 ln
𝒑𝑖

𝒒𝑖
𝑖     and   𝑫𝐾𝐿(𝒒|𝒑) = ∑ 𝒒𝑖 ln

𝒒𝑖

𝒑𝑖
𝑖    
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The symmetric one is    
 𝑫𝐾𝐿𝑆(𝒑, 𝒒) = pro(𝑫𝐾𝐿(𝒑|𝒒)) + pro(𝑫𝐾𝐿(𝒒|𝒑))       
 
where pro(𝒑) returns a proper version of interval p. A smaller value of KL divergence indicates that model 
can be validated by experiment with a higher level of consistency. With interval-valued KL divergence, the 
imprecision is quantified by intervals. The cases of overlap or inclusion between two interval-valued KL 
divergences from two models imply the lack of confidence about the assertion about which model is more 
valid.  
 
In summary, generalized interval probability provides a computationally efficient alternative to traditional 
sensitivity analysis for epistemic uncertainty. The unique algebraic property of generalized interval allows 
for simple calculation such as Bayes’ rule that is similar to the one in classical probability. Generalized 
interval Bayes’ rule ensures soundness of interval range estimation of posterior probability under 
epistemic uncertainty at the expense of completeness. Wide interval probabilities with large epistemic 
uncertainty lead to underestimation of interval ranges during calculation. Additional sensitivity analysis 
for assigning proper and improper interval probabilities is thus recommended to improve completeness. 
As the widths of input intervals reduce, the extent of underestimation also reduces with more complete 
estimation. When the widths reduce to zero, it converges to classical Bayes’ rule. The total ignorance 
representation [0,1] in likelihoods does not provide more advantage over the equal-probability approach 
used in classical probability. In addition, the developed Bayesian approach for cross-scale information 
aggregation and model validation is generally applicable for both imprecise probability and classical 
probability. The Bayesian aggregation approach for multiscale uncertainty quantification with the 
presence of both aleatory and epistemic uncertainty needs further investigation.   

 

Task 3 Sensitivity studies 
 
Sensitivity studies comprises the bulk of the third year effort, along with configuration of the model chains 
for the three uncertainty sub-problems.   
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Summary of Accomplishments, September 1, 2012 – August 31, 2015 

 
Primary advisors and students supported are as follows: 
 
Professor: T. Zhu  
Atomistics and unit processes 
Informing crystal plasticity 
Informing KMC 
Uncertainty of interatomic potentials, boundary conditions, schemes, etc.  
Student: Zhi Zeng 
 
Professor: C. Deo  
KMC and event frequencies for mechanisms 
Uncertainty of events, frequencies, unit processes, interactions, etc. 
Informing crystal plasticity  
Students:  Each supported ½ time on this project 
Richard (Trey) Hoffman 
Alex Moore, Completed MS Degree, now PhD student 
  
Professors: D.L. McDowell and Y. Wang  
Crystal plasticity 
Hierarchical multiscale modeling chains 
Interval probability estimates and schemes 
Oversight and collaborative execution (with students 1 and 2) of uncertainty propagation and mitigation  
Students: Aaron Tallman (fall 2012-present) and Joel Blumer (graduated with MS degree in 2014). 
 
Some of the multiscale models in uncertainty sub-problem 3 are built upon foundations of models built 
with support of the prior NEUP  award DE-AC07-05ID14517 09-269, supporting the PhD theses of Sankar 
Narayanan (graduated in May  2014) and Anirban Patra (graduated in December 2013). 
 
It is expected that building on the foundations of this NEAMS funding, all three uncertainty sub-problems 
will be fleshed out fully in the collaborative continued doctoral theses and joint papers by the students 
and faculty supported by this program, as outlined in Section ?.  Moreover, an internship is being pursued 
at Sandia National Laboratories for Aaron Tallman, who is a key collaborating PhD student in pursuing 
collaborative execution of the following three multiscale uncertainty sub-problems: 
 

1. Interstitial Loop/Dislocation Interactions in Irradiated Fe Alloys 
2. Void Nucleation, Growth and Interactions with Dislocations in Irradiated Fe Alloys 
3. Bottom-Up and Top-Down Uncertainty in Informing Crystal Plasticity for BCC Systems 

 

Conferences Attended  

 

 Various team members (D.L. McDowell served as General Chair), Society of Engineering Science 
49th Annual Technical Meeting, Atlanta, GA, Oct. 10-12, 2012  

 Yan Wang, The 2nd World Congress on Integrated Computational Materials Engineering 
(ICME’13), July 7-11, 2013, Salt Lake City, Utah 

 David McDowell, MRS Fall Meeting, Boston, MA, Nov. 25-30, 2012 
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 David McDowell and Ting Zhu, TMS annual meeting, San Antonio, TX, March 3-7, 2013 

 Chaitanya Deo and David McDowell, ANS Annual Meeting, Atlanta, GA, June 16-20, 2013 

 R. Hoffman and C. Deo, Nuclear Fuels (MMSNF) 2013 Workshop, October 14-16 2013, Chicago, IL. 

 David McDowell and Ting Zhu, MS&T annual meeting, Montreal, Canada, Oct. 27-31, 2013 

 Chaitanya Deo and David McDowell, MRS Fall Meeting, Boston, MA, Dec. 1-6, 2013 

 David McDowell and Ting Zhu, 7th International conference on Multiscale Materials 
Modeling,  Berkeley, CA, Oct. 6-10,  2014. 

 Chaitanya Deo, David McDowell, Zhi Zeng, and Ting Zhu, TMS annual meeting, San Diego, CA, Feb. 
16-20,  2014. 

 Chaitanya Deo, Trey Hoffman, and David McDowell, 17th U. S. National Congress on Theoretical 
and Applied Mechanics, Lansing, MI,  June 15-20, 2014.  

 Chaitanya Deo and Trey Hoffman, American Nuclear Society (ANS), Reno, NV, June 15-19, 2014. 

 Yan Wang, The 2nd International Conference on Vulnerability and Risk Analysis and Management 
(ICVRAM2014) & 6th International Symposium on Uncertainty Modeling and Analysis 
(ISUMA2014), July 13-16, 2014, Liverpool, UK 

 Chaitanya Deo and David McDowell , MRS Fall Meeting, Boston, MA, Nov. 30-Dec. 5, 2014. 

 Chaitanya Deo and Alex Moore, MRS Spring Meeting, San Francisco, CA, April 6-10, 2015. 

 David McDowell, 4th International Conference on Material Modeling, Berkeley, CA, May 27-29, 
2015. 

 David McDowell, ICME 3rd World Congress, Colorado Springs, CO, May 31-June 4, 2015. 

 Zhi Zeng and Ting Zhu, ASME Materials and Applied Mechanics conference, Seattle, WA June 29-
July 1,2015 

 

Conference Presentations  

 
T. Zhu, "Deformation and Fracture Mechanisms in Gradient Nano-Grained Metals"  TMS annual 
conference in San Antonio, TX, March 2013.  
 
Wang Y., McDowell D.L., Tallman A.E. “Cross-scale, cross-domain model validation based on generalized 
hidden Markov model and generalized interval Bayes’ rule” 2nd World Congress on Integrated 
Computational Materials Engineering (ICME 13), July 7-11, 2013, Salt Lake City, Utah. 
 
Wang Y. (August 2013) “Validation of Atomistic Simulation under Aleatory and Epistemic Uncertainties”, 
National Institute of Standards & Technology, Gaithersburg, Maryland, August 2013. 
 
R. Hoffman, R. Behera, and C. Deo, "Kinetic Monte Carlo Study of Oxygen Defect Migration in Urania Fuel." 
Materials Modeling and Simulation for Nuclear Fuels (MMSNF) 2013 Workshop, October 14-16 2013, 
Chicago, Illinois (poster). 

Hoffman, R.T., Bahera, R., Deo, C.S., “Kinetic Monte Carlo study of oxygen defect migration in urania fuel,” 
Materials Modeling and Simulation for Nuclear Fuels, Chicago, IL, October 14-16, 2013. 
 
Narayanan, S., Zhu, T. and McDowell, D.L., “Crystal Plasticity Model for BCC Iron Atomistically Informed 
by the Kinetics of Correlated Kinkpair Nucleation,” MS&T ’13, Montreal, Quebec, Canada, October 27-31, 
2013. 
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Patra, A., Zhu, T., and McDowell, D.L., “Constitutive Equations for Dislocation Core Spreading in BCC-Fe 
Accounting for Dislocation-Dislocation Interactions and Finite Temperature Effects,” MS&T ’13, Montreal, 
Quebec, Canada, October 27-31, 2013. 
 
T. Zhu, "Crystal Plasticity Model for BCC Iron Atomistically Informed by Kinetics of Correlated Kinkpair 
Nucleation on Screw Dislocations,” TMS annual conference in San Diego, CA, February  2014.  
 
Z. Zeng, T. Zhu, “"Atomistic and electron tomography study of 3D dislocation-grain boundary interaction 
in BCC metals,” TMS annual conference in San Diego, CA, February 2014.  
 
R. Hoffman and C. Deo, "Kinetic Monte Carlo Study of Fission Gas and Grain Growth in Nuclear Materials." 
TMS Annual Meeting February, 2014 (poster). 
 
R. Hoffman, R. Behera, and C. Deo, "Atomistic Investigation of Ionic Conductivity in Chorimum-doped 
Urania Fuel", TMS Annual Meeting February 2014. 
 
Deo, C., “Calculation of Threshold Energy”, TMS annual conference in San Diego, CA, February  2014. 
 
Narayanan, S., McDowell, D.L., and Zhu, T., “Crystal Plasticity Model for BCC Iron Atomistically Informed 
by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocations,” TMS 2014, San Diego, CA, Feb. 18, 
2014. 

Deo, C., Beeler, B., Okuniewski, M.,  Baskes, M., “Atomistic Modeling of Radiation Damage in bcc 
Uranium,” 2014 TMS Annual Meeting & Exhibition, Progress Towards Rational Materials Design in the 
Three Decades Since the Invention of the Embedded Atom Method: An MPMD Symposium in Honor of 
Dr. Michael I Baskes, San Diego, CA February 2014. 

 
Wang Y., McDowell D.L., Blumer J.D., Tallman A.E. “Quantification of model form uncertainty in molecule 
dynamics simulation.” 2014 Society for Industrial & Applied Mathematics (SIAM) Conference on 
Uncertainty Quantification, Savannah, GA, March 30-April 3, 2014. 
 
McDowell, D.L., “Bridging Mesoscale Gaps to Enable Design of Materials at Extremes,” Opening Plenary 
Lecture, Mach Conference 2015, Annapolis, MD, April 9-11, 2014. 
 
R. Hoffman and C. Deo, "Use of the Potts Model to Analyze Nuclear Materials" The 17th U. S. National 
Congress on Theoretical and Applied Mechanics, June 15-20 2014, Lansing, Michigan.  

Moore A., Chen, E., Deo, C., “Atomistic Study and Characterization of Metallic Uranium Interphases and 
Grain Boundaries,” Symposium on Multiscale Modeling and Experiments on Microstructural Evolution in 
Nuclear Materials, MRS Spring Meeting, San Francisco, CA, April 6-10, 2015. 
 
Tallman, A., Blumer, J., Wang, Y., Narayanan, S., Zhu, T. and McDowell, D.L., “Bottom-up and Top-down 
Uncertainty Quantification of bcc Fe Single Crystal Plasticity,” ICME 3rd World Congress, Colorado Springs, 
CO, June 3, 2015 (invited). 
 
McDowell, D.L., “Rectifying Bottom-Up and Top-Down Uncertainties in Multiscale Modeling: Scientific and 
Engineering Aspects Relevant to ICME Multilevel Materials Design and Development,” ICME 3rd World 
Congress, Colorado Springs, CO, June 4, 2015 (plenary). 
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Conference Papers 
 

Wang Y., McDowell D.L., Tallman A.E. “Cross-scale, cross-domain model validation based on generalized 
hidden Markov model and generalized interval Bayes’ rule.” Proceedings of the 2nd World Congress on 
Integrated Computational Materials Engineering (ICME’13), July 7-11, 2013, Salt Lake City, Utah, pp.149-
154. 
 
Tallman A.E., Blumer J.D., Wang Y., and McDowell D.L. “Multiscale model validation based on generalized 
interval Bayes’ rule and its application in molecular dynamics simulation.” Proceedings of 2014 ASME 
International Design Engineering Technical Conferences & Computers and Information in Engineering 
Conference (IDETC/CIE2014), Aug. 17-20, 2014, Buffalo, New York, Paper No. DETC2014-35126. 
 
Wang Y. “Training generalized hidden Markov model with interval probability parameters.” Proceedings 
of 2nd International Conference on Vulnerability and Risk Analysis and Management (ICVRAM2014) & 6th 
International Symposium on Uncertainty Modeling and Analysis (ISUMA2014), July 13-16, 2014, Liverpool, 
UK. 
 

Journal Articles 
 
Submitted and Accepted During this Grant Period 
 
Atomistic modeling of high temperature uranium-zirconium alloys structure and thermodynamics, A. 
Moore, B. Beeler, C. Deo, M. I. Baskes and M. A. Okuniewski, submitted to Journal of Nuclear Materials 
June 2015, Accepted for Publication September 2015. 
 
Narayanan, S., McDowell, D.L., and Zhu, T., “Crystal Plasticity Model for BCC Iron Atomistically Informed 
by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocations,” Journal of the Mechanics and Physics 
of Solids, Vol. 65, 2014, pp. 54-68. 
 
Patra, A., Zhu, T. and McDowell, D.L., “Constitutive equations for modeling non-Schmid effects in single 
crystal bcc-Fe at low and ambient temperatures,” Int. J. Plasticity, Vol. 59, 2014, pp. 1-14. 
 
J. W. Wang, S. Narayanan, J. Y. Huang, Z. Zhang, T. Zhu and S. X. Mao. Atomic-scale dynamic process of 
deformation-induced stacking fault tetrahedra in gold nanocrystals. Nature Communications, 4, 2340 
(2013) 

Journal articles submitted  
 
Bahera, R.K., Watanabe, T, Andersson, D.A., Uberuaga, B.P., and Deo, C.S., "Role of O/M ratio and O-O 
binding energy on the diffusion of oxygen interstitials in UO2+x using kinetic Monte Carlo Simulations,’ 
submitted to Journal of Nuclear Materials, August 2015. 
 
 
Journal articles in preparation 
 

 A Bayesian approach for multiscale model validation with imprecise probability 
Blumer, J.D., McDowell, D.L., and Wang, Y. 

 Sensitivity analysis of Point Defect Balance Equations 
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R. Hoffman, A. Tallman, C.S. Deo and D.L. McDowell 

  Diffusion of oxygen vacancies in doped ceria and Urania - draft under preparation for submission 
to the Journal of Nuclear Materials 
R. Hoffman and C.S. Deo 

 Structural Uncertainty Quantification in Rate Law simulation of bcc metal irradiation-void 
nucleation and growth 
R. Hoffman, A. Tallman, A. Moore, C. Deo, D.L. McDowell 

 Rate Law simulation of bcc Fe irradiation-void nucleation and growth, with Uncertainty 
Propagation through Crystal Plasticity modeling of irradiated bcc Fe 
A. Tallman, T. Hoffman, A. Moore, Y. Wang, C. Deo, D.L. McDowell 

 Uncertainty Propagation within MD-informed Crystal Plasticity Modeling of Mobile and Immobile 
Interstitial Loops in Irradiated bcc Fe 
Z. Zeng, A. Tallman, T. Zhu, Y. Wang, D.L. McDowell 

 Top-Down and Bottom-Up Uncertainty Quantification of  MD-informed Crystal Plasticity Modeling 
of Mobile and Immobile Interstitial Loops in Irradiated bcc Fe 
A. Tallman, Z. Zeng, T. Zhu, Y. Wang, D. L. McDowell 

 Bottom-up and top-down uncertainty quantification of bcc Fe plasticity and dislocation-interstitial 
loop interactions 
A.E. Tallman, Z. Zeng, C.  Sobie, Y. Wang, L. Capolungo, T. Zhu, D.L. McDowell 

 Calibration Based Structural Uncertainty Quantification of a Top-Down and Bottom-Up Crystal 
Plasticity Model of bcc Fe  
Aaron Tallman, Yan Wang, David L. McDowell 

 
Theses Awarded  
 

Blumer, J. “Cross-Scale Model Validation with Aleatory and Epistemic Uncertainty,” M.S. Thesis, Georgia 
Institute of Technology, May 2015 

 

Invited Seminars 

 

Wang Y. (August 2013) “Validation of Atomistic Simulation under Aleatory and Epistemic Uncertainties,” 
National Institute of Standards & Technology Workshop on Atomistic Simulations for Industrial Needs, 
Gaithersburg, Maryland. 
 
Wang Y., “Quantifying model form uncertainty in molecular dynamics simulation.” December 16-17, 2013, 
invited presentation, University of Minnesota, Institute for Mathematics and its Applications, 
Minneapolis, Minnesota, Dec. 16-17, 2013. 
 
McDowell, D.L., “Modeling Inelastic Behavior of Metals at Multiple Scales for Multiple Purposes,” George 
Washington University, April 8, 2014. 
 

McDowell, D.L., “Modeling Inelastic Behavior of Metals at Multiple Scales for Multiple Purposes,” Arizona 
State University, October 3, 2014. 
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Wang Y., "Uncertainty Quantification for Reliable Atomistic Simulation,” Colorado School of Mines. Dec. 
2014. 

 

Conference, Symposium and Workshop Organization 

 
Wang, Y., Mini Symposium “Model Form Uncertainty in Modeling, Simulation and Analysis” at 2014 SIAM 
Conference on Uncertainty Quantification, Savannah, Georgia, with 12 presentations (co-organizers: 
Laura Swiler, Sankaran Mahadevan) 
 
McDowell, D.L., Chair, 49th Annual Technical Meeting of the Society of Engineering Science (SES), Georgia 
Tech Hotel, Oct. 10-12, 2012 (420 participants). 
 
McDowell, D.L., Member, Scientific Committee, 17th U.S. National Congress on Theoretical and Applied 
Mechanics, Michigan State University, East Lansing, MI, June 16-20, 2014 (along with T. Hughes and M. 
Sacks, Univ. Texas-Austin, M. Abeyaratne, MIT, F. Moon, Cornell, and A. Smits, Princeton).  
 
McDowell, D.L., Co-organizer (with J. Neugebauer, D. Wu, P. Gumbsch, K. Rajan, and V. Bulatov), 
Symposium on Multiscale Simulations and Modeling Integrated Materials Engineering, with Bulatov et al., 
7th Int. Conference on Multiscale Materials Modeling, 2014, Berkeley, CA, Oct. 6-10, 2014. 
 
McDowell, D.L., Co-organizer (with K. Hackl), Symposium on Multiscale Modeling (multi-day), 4th Int. Conf. 
on Materials Modeling, Berkeley, CA, May 27-29, 2015. 
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May 8, 2014 Sandia Review of the Georgia Tech NEAMS Program 
 
In the first year, the co-PIs attended several conferences and presented results.  PI D.L. McDowell traveled 
to both PNNL and INL to discuss research within this program to both modeling and simulation and 
experimental groups with regard to collaboration.  Laura Swiler from Sandia visited Georgia Tech on 
February 7, 2013 for a project review and summary of first year plans. 
 
D.L. McDowell coordinated with L. Swiler at Sandia-Albuquerque to hold a ½ day telecom review of this 
NEAMS program with a Sandia team covering aspects of atomistic modeling, multiscale modeling, and 
uncertainty May 8, 2014. 
 
Objectives: 

• Mid-course project reporting and feedback from Sandia 
• Integrate more closely with Sandia uncertainty modeling efforts 
• Identify potential collaborations 

 
Agenda 
 
11:00 am Welcome and Introductions, Sandia Interests – Dave McDowell and Laura Swiler 
  
11:15 am 
Overview of Georgia Tech NEAMS program 

o   Overall objectives and timeline – Dave McDowell (15 minutes) 
o   Multiscale models 

 MD Knock on – CD and students (10 minutes) 

 NEB and unit processes; ab initio for core interactions – Ting Zhu and students (15 
minutes) 

 KMC for cooperative processes – CD and students (15 minutes) 

 Mechanism-based crystal plasticity – Dave McDowell and Aaron Tallman (15 
minutes) 

o   Generalized Interval probability theory and Markov chains 

 General principles – Yan Wang (20 minutes) 

 MD knock-on simulations for Frenkel pair formation – Yan Wang and students (15 
minutes) 

1:10 pm - Outline and describe uncertainty subproblems – Aaron Tallman and Joel Blumer (20 minutes) 
         Summary of progress – Dave McDowell (5 minutes) 
 
1:35 pm - General discussion, Sandia feedback and guidance 
 
Adjourn 2:00 pm 
 
Attendees: Entire GT team 
Georgia Tech: Entire team of faculty and graduate students 
Sandia: Laura Swiler and team of atomistics modelers and uncertainty experts 
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Quadchart 
 
 
  

 
Suggested Future Directions 

 

As stated in this report we anticipate that this foundational three-year NEAMS program will lead to 
multiple PhD theses in the next two years that flesh out the three multiscale uncertainty sub-problems 
discussed in this final report.  This activity will have substantial impact on both model form/structure and 
parameter uncertainty in multiscale model chains, which heretofore has been relatively uncharted 
territory.   We anticipate that a growing relationship between Georgia Tech and Sandia will also allow us 
to continue to develop and extend these concepts and approaches to more complex multiscale and 
multiphysics modeling/experiment (bottom-up and top-down) scenarios through collaboration. 
 
The team has some additional specific thoughts regarding future research directions: 
 

 Looking beyond Fe to hcp Zr and Zr-Nb alloys 
 Understanding UQ and sensitivity to parameter choices in MOOSE based codes (MOOSE: 

framework used by INL for fuel performance codes) 
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 Extend the combined top-down and bottom-up approach to study other aspects of fuel-clad 
performance including fuel thermal conductivity and fission gas evolution in nuclear fuel 

 Further exploration of Bayesian Approaches for multiscale model validation with imprecise 
probability measures 

 
Clearly, it is important to continue to support development of systematic uncertainty methods to 
quantify model structure uncertainty and propagation across model chains.   PI/PD D. McDowell 
served on a TMS Study Group in 2014-2015 which produced a roadmapping study report for 
multiscale modeling (http://www.tms.org/multiscalestudy/) that features uncertainty quantification 
and propagation as a primary scientific challenge to be addressed by the community (see below).   
 
 

  

http://www.tms.org/multiscalestudy/
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