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I. Introduction 

Despite current events associated with the light water reactors in Fukishima, Japan, 
energy producers continue to look at nuclear power as a viable alternative for power generation. 
There are several new designs that transcend the older light water reactors that failed to perform 
safely in Japan. Among the designs for the next generation power plant is the very high 
temperature reactors (VHTR), molten salt reactors, and super critical water cooled reactors. In 
addition to generating electricity the VHTR will be able to produce hydrogen without consuming 
fossil fuels or emitting greenhouse gasses which is a distinct benefit. Emerging technologies 
often depend on new materials or the innovative use of existing material, and graphite is a key 
material in the design of several of the next generation nuclear power plants. 

Currently there are two designs for the VHTR.  The first design utilizes a prismatic core 
reactor. The second design is known as a pebble bed reactor.  In the prismatic core reactor the 
nuclear fuel is contained in fuel rods.  Hexagonal graphite blocks that hold the fuel rods are used 
to moderate the nuclear reaction.  The cooling gas runs in channels inside the hexagonal 
prismatic blocks.  The reactor is comprised of an array of blocks that accommodate fuel rods, 
control rods, and cooling channels. 

Alternatively, in pebble bed reactors the fissile material, the moderator, and a fission 
product barrier are contained in softball sized pebbles.  The pebbles are continuously cycled 
through reactor channels and are removed from the bottom of the reactor.  The pebbles are then 
tested to determine how much nuclear fuel remains.  If sufficient fuel remains the pebble is 
returned to the reactor.  Process cooling gas flows around the pebbles as they are cycled through 
the reactor. 

Prismatic core reactors are designed to reach higher service temperatures than the pebble 
bed reactor.  The initial designs for the prismatic core reactors call for an outlet temperature 
ranging from 850 C to 1000 C.  At these temperatures water can be “cracked” into hydrogen and 
oxygen in the presence of a catalyst.  Thus a virtuous (i.e., clean) process is established that 
produces electricity, hydrogen feed stocks for the chemical industry, and pure oxygen. 

The core components of the VHTR cannot be fabricated from of metals due to radiation 
levels and operating temperatures.  Graphite has long been utilized as a moderator material. 
Several countries including the United States, France, the United Kingdom, Germany, South 
Africa, Japan, and China support evolving technologies for nuclear graphite material systems 
that focus on several aspects of the behavior of graphite in reactor cores.  These technologies are 
key to the VHTR program. 

I.1  Constitutive Models 

Accurate stress states are a necessity in designing reactor components. The effort here 
assumes the stress-strain response for nuclear grade graphite can be characterized using an 
inelastic constitutive model that accounts for different behavior in tension and compression, as 
well as accounts for material anisotropy.  Graphite has a relatively small elastic range.  
Moreover, the stress-strain relationship for graphite is for the most part nonlinear. An objective 
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of this project is the development of a comprehensive constitutive model that will predict both 
elastic and inelastic cyclic phenomenological behavior.  An appropriate elasticity model is 
integrated with the proposed inelastic constitutive model when cyclic loading is discussed.  In 
the presence of time dependent phenomenon such as creep, one needs a viscoplastic constitutive 
model.  The time independent inelastic model presented here can be extended to include rate 
dependent effects.  This is left for future work. 

As was just mentioned one of the fundamental behaviors that must be accounted for in 
graphite materials is the different behaviors in tension and compression.  Graphite is not the only 
material that behaves differently in tension and compression under mechanical loads.  Concrete 
also exhibits different properties in tension and compression, and inelastic constitutive models 
exists for concrete, e.g., the phenomenological model developed by William and Warnke (1974), 
Ottosen (1977) and Hsieh et al. (1979).  An effort was made to extend the William and Warnke 
(1974) model for graphite to include material anisotropy.  That effort was unsuccessful.  An 
alternative constitutive model proposed by Green and Mkrtichian (1977) was adopted in this 
effort.  Aspects of this model are thoroughly presented and the model is successfully extended to 
include anisotropy in a unified inelastic model. 

Issues such as neutron radiation damage in graphite which initially causes an increase in 
the modulus of elasticity and then deteriorates with time are one of the many topics under current 
study that was not be addressed in this project.  In the future plans call for modeling this 
phenomenon by incorporating damage state variables.  Current constitutive models for graphite 
are empirically based account for radiation damage serves as a starting point for this issue. 

I.2  Probabilistic Failure Analyses 

The nuclear moderator and major structural components for VHTRs are constructed from 
graphite.  During operations the graphite components are subjected to complex stress states 
arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events, 
any and/or all of which can lead to failure.  As discussed by Burchell, et al (2007) failure theories 
that predict reliability of graphite components for a given stress state are important. 

Graphite is often described as a brittle or quasi-brittle material.  Tabeddor (1979) and 
Vijayakumar, et al (1987, 1990) emphasize the anisotropic effect the elongated grain graphite 
structure has on the stress-strain relationship for graphite.  These authors also discuss the aspect 
that the material behaves differently in tension and in compression.  These two properties, i.e., 
material anisotropy and different behavior in tension and compression, make formulating a 
failure model challenging. 

Classical brittle material failure criteria can include phenomenological failure criteria, as 
well as fracture mechanics based models.  The approach taken in linear elastic fracture 
mechanics involves estimating the amount of energy needed to grow a pre-existing crack.  The 
earliest fracture mechanics approach for unstable crack growth was proposed by Griffiths (1921).  
Li (2001) points out that the strain energy release rate approach has proven to be quite useful for 
metal alloys.  However, linear elastic fracture mechanics is difficult to apply to anisotropic 
materials with a microstructure that makes it difficult to identify a “critical” flaw.  An alternative 
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approach can be found in the numerous phenomenological failure criteria identified in the 
engineering literature. 

Popular phenomenological failure criteria for brittle materials tend to build on the one 
parameter Tresca model (1864), and the two parameters Mohr-Coulomb failure criterion (1776) 
that has been utilized for cohesive-frictional solids.  Included with these fundamental model is 
the von Mises criterion (1913) (a one-parameter model) and the two parameter Drucker-Prager 
failure criterion (1952) for pressure-dependent solids.  In the past these models have been used to 
capture failure due to ductile yielding.  Paul (1968) developed a generalized pyramidal criterion 
model which he proposed for use with brittle material. In Paul’s work, an assumption that the 
yield criteria surface is piecewise linear is utilized which is similar to Tresca’s model.  The 
Willam and Warnke (1974) model is a three-parameter model that captures different behavior in 
tension and compression exhibited by concrete.  Willam and Warnke’s model is composed of 
piecewise continuous functions that maintain smooth transitions across the boundaries of the 
functions.  The proposed work here will focus extensively on models similar to Willam and 
Warnke’s efforts. 

With regards to phenomenological models that account for anisotropic behavior the 
classic Tsai and Wu (1971) failure criterion is a seminal effort.  Presented in the context of 
invariant based stress tensors for fiber-reinforced composites, the Tsai-Wu criterion is widely 
used in engineering for different types of anisotropic materials.  In addition Boehler and 
Sawczuk (1977), Boehler (1987), as well as Boehler and Kirillov (1994) developed yield 
criterion utilizing the framework of anisotropic invariant theory.  Yield functions can easily serve 
as the framework for failure models.  Subsequent work by Nova and Zaninetti (1990) developed 
an anisotropic failure criterion for materials with failure behavior different in tension and 
compression.  Theocaris (1991) proposed an elliptic paraboloid failure criterion that accounts for 
different behavior in tension and compression.  An invariant formulation of a failure criterion for 
transversely isotropic solids was proposed by Cazacu et al. (1998, 1999).  Cazacu’s criterion 
reduces to the Mises-Schleicher criterion (1926), which captured different behavior in tension 
and compression for isotropic conditions.  Green and Mkrtichian (1977) also proposed functional 
forms account for different behavior in tension and compression.  Their work will be focused on 
later in this effort 

In addition to anisotropy and different behavior in tension and compression, failure of 
components fabricated from graphite is also governed by the scatter in strength.  When material 
strength varies, it is desirable to be able to predict the probability of failure for a component 
given a stress state.  Weibull (1951) first introduced a method for quantifying variability in 
failure strength and the size effect in brittle material.  His approach was based on the weakest 
link theory.  The work by Batdorf and Crose (1974) represented the first attempt at extending 
fracture mechanics to reliability analysis in a consistent and rational manner.  Work by 
Gyekenyesi (1986), Cooper, et al. (1986, 1988) and Lamon (1990) are representative of the 
reliability design philosophy used in analyzing structural components fabricated from monolithic 
ceramic.  Duffy et al. (1990a, 1990b, 1991, 1993, 1994) presented an array of failure models to 
predict reliability of ceramic components that have isotropic, transversely isotropic, or 
orthotropic material symmetry.  For the most part these models were based on developing an 
appropriate integrity basis for each type of anisotropy. 
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The work in this project assumed the existence of a threshold function, which also served 
as a inelastic potential function.  Since the inelastic potential function is scalar valued, tensorial 
invariant theory was used to construct appropriate functions. Threshold functions are extended to 
account for graphites that exhibit transversely isotropic behavior.  Specifically an inelastic 
constitutive model with isotropic threshold functions proposed by Green and Mkrtichian (1977) 
were initially adopted for this work.  Both the isotropic and anisotropic inelastic models are 
derived based on associated threshold functions.  The same functional forms for the inelastic 
threshold functions were utilized to formulate failure functions.  The parameters associated with 
the failure function are treated as random variables.  The result is a probabilistic based failure 
model that accounts for the unique phenomenological behavior of graphite, i.e., different 
behavior in tension ad compression as well as anisotropic failure. 

I.3 Stress Based Functions and Integrity Bases 

A function associated with a phenomenological failure criterion based on multi-axial 
stress for isotropic materials will have the basic form 

  ijff   (1) 

This function is dependent on the Cauchy stress tensor, ij , which is a second order tensor, and 
parameters associated with material strength.  Given a change in reference coordinates, e.g., a 
rotation of coordinate axes, the components of the stress tensor change.  We wish to formulate a 
scalar valued failure function so that it is not affected when components of the stress tensors 
change from a simple orthogonal transformation of coordinate axes.  A convenient way of 
formulating a failure function to accomplish this is utilizing the invariants of stress.  The 
development below follows the method outlined by Duffy (1987) and serves as a brief discussion 
on the invariants that comprise an integrity basis. 

Assume f is a scalar valued function dependent upon several second order tensors, i.e., 

  CBAff ,,  (2) 

where A, B and C are the matrices representing second order tensor quantities.  One way of 
constructing an invariant formulation for this function is to express f as a polynomial in all 
possible traces of the A, B and C, i.e.,  

 )(Atr , )( 2Atr , )( 3Atr , … (3) 

 )(ABtr , )(ACtr , )(BCtr , )( 2BAtr  … (4) 

 )(ABCtr , )( 2BCAtr , )( 3BCAtr , … (5) 

 )( 2CABtr , )( 3CABtr , … (6) 
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 )( 2ABCtr , , … (7) 

 )( 22 CBAtr , , … (8) 

where using index notation 

 


iiAAtr )(
 (9) 

 


jiij BAABtr )(
 (10) 

 


kijkij CBAABCtr )(
 (11) 

These are all scalar invariants of the second order tensors represented by the matrices A, B and C.  
Construction of a polynomial in terms of all possible traces of the three second order tensors is 
analogous to expanding the function in terms of an infinite Fourier series. 

However a polynomial with an infinite number of terms is clearly intractable.  On the 
other hand if it is possible to express a number of the above traces in terms of any of the 
remaining traces, then the former can be eliminated.  Systematically culling the list of all 
possible traces to an irreducible set leaves a finite number of scalar quantities (invariants) that 
form what is known as an integrity basis.  This set is conceptually similar to the set of unit 
vectors that span Cartesian three spaces. 

 The approach to systematically eliminate members from the infinite list can best be 
illustrated with a simple example.  Consider 

 )(Aff   (12) 

By the Cayley-Hamilton theorem, the second order tensor A will satisfy its own characteristic 
polynomial, i.e., 

  0][32
2

1
3  IkAkAkA  (13) 

where 

 )(1 Atrk   (14) 

 
2

)())(( 22

2

AtrAtr
k


  (15) 

)( 3ABCtr

)( 23 CBAtr
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)()2()()()3())(( 323

3

AtrAtrAtrAtr
k


  (16) 

 tensornull]0[  (17) 

and 

 tensoridentityI ][  (18) 

Multiplying the characteristic polynomial equation by A gives 

  03
2

2
3

1
4  AkAkAkA  (19) 

Taking the trace of this last expression yields 

  )()()()( 3
2

2
3

1
4 AtrkAtrkAtrkAtr   (20) 

and this shows that since k1, k2 and k3 are functions of tr(A), tr(A2), and tr(A3), then  

         AtrAtrAtrAtr ,, 234 g  (21) 

is only a function of these three invariants as well.  Indeed repeated applications of the preceding 
argument would demonstrate that tr(A5), tr(A6), … , can be written in terms of a linear 
combination of the first three traces of A.  Therefore, by induction 

       32 ,,)( AtrAtrAtrAtr p g  (22) 

for any 

 3p  (23) 

Furthermore, any scalar function that is dependent on A can be formulated as a linear 
combination of these three traces.  That is if 

  Aff   (24) 

then the following polynomial form is possible 

 )()()()()()( 3
2

2
3

1 AtrkAtrkAtrkf   (25) 

and the expression for f is form invariant.  The invariants tr(A3), tr(A2), tr(A) constitute the 
integrity basis for the function f.  In general the results hold for the dependence on any number of 
tensors.  If the second order tensor represented by A is the Cauchy stress tensor, then this infers 



7 
 

the first three invariants of the Cauchy stress tensor span the functional space for scalar functions 
dependent onij. 

I.4 Invariants of the Cauchy and Deviatoric Stress Tensors  

If one accepts the premise from the previous section for a single second order tensor, and 
if this tensor is the Cauchy stress tensor ij, then  

  321 ,,)( IIIff ij   (26) 

where 

 iiI 1  (27) 

   kjjkiiI  





 2

2 2

1
 (28) 

and 

             3
3 32

6

1
iikjjkiikijkijI  






  (29) 

are the first three invariants of the Cauchy stress.  Since the invariants are functions of principle 
stresses 

 3211  I  (30) 

 3132212  I  (31) 

and 

 3213 I  (32) 

then  

 
   

 321

321

,,

,,





f

IIIff ij




 (33) 

Furthermore, the stress tensor ij can be decomposed into a hydrostatic stress component 
and a deviatoric component in the following manner.  Take  
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 ijkkijijS  







3

1
 (34) 

If we look for the eigenvalues for the second order deviatoric stress tensor (Sij) using the 
following determinant 

 0 ijij SS   (35) 

then the resultant characteristic polynomial is  

 032
2

1
3  JSJSJS  (36) 

The coefficients J1, J2 and J3 are the invariants of Sij and are defined as 

 01  iiSJ  (37) 

 

2
2

1

2

3

1

2

1

II

SSJ jiij

















 (38) 

and  

 

321
3

1

3

3

1

27

2

3

1

IIII

SSSJ kijkij
























 (39) 

These deviatoric invariants will be utilized as needed in the discussions that follow. 

 



9 
 

 

Figure 1 Decomposition of stress in the Haigh-Westergaard (principal) stress space 

In the Haigh-Westergaard stress space a given stress state (1, 2, 3) can be graphically 
decomposed into hydrostatic and deviatoric components.  This decomposition is depicted 
graphically in Figure 1.  Line d in Figure 1 represents the hydrostatic axis where 1 = 2 = 3 
such that the line makes equal angles to the coordinate axes.  We define the planes normal to the 
hydrostatic stress line as deviatoric planes.  As a special case the deviatoric plane passing 
through the origin is called the plane, or the principal deviatoric plane.  Point P (1, 2 , 3) 
in this stress space represents an arbitrary state of stress.  The vector NP represents the deviatoric 
component of the arbitrary stress state, and the vector ON represents the hydrostatic component.  
The unit vector e  in the direction of the hydrostatic stress line d is 

 ]111[
3

1
e  (40) 

The length of ON, which is identified as , is 

 

 

1

321

3

1

1

1

1

3

1
][

I

eOP

































 (41) 

The length of NP, which is identified as a radial distance ( r) in a deviatoric plane, is 

N

1

2

3

O

d

),,( 321 P



r
ComponentDevatoric

ComponentcHydrostati
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][

]111[
3

][

321

1
321

SSS

I

NOPOr















  (42) 

From this we obtain 

 

2

2
3

2
2

2
1

2

2J

SSS

rr






 (43) 

such that 

 22Jr   (44) 

One more relationship between invariants is presented.  An angle, identified in the 
literature as Lode’s angle, can be defined on the deviatoric plane.  This angle is formed from the 
projection of the 1 – axis onto a deviatoric plane and the radius vector in the deviatoric plane, 
r .  The magnitude of the angle is computed from the expression 

 )600(
)(

)(

2

33
cos

3

1 00
23

2

31 

























  

J

J
 (45) 

As the reader will see this relationship has been used to develop failure criterion.  It is also used 
here to plot failure data. 

We now have several graphical schemes to present functions that are defined by various 
failure criterion.  They are 

 a principle stress plane (e.g., the 1 - 2 plane);  
 the use of a deviatoric plane presented in the Haigh-Westergaard stress space; or   
 meridians along failure surfaces presented in the Haigh-Westergaard stress space that are 

projected onto a plane defined by the coordinate axes ( r ). 

Each presentation method will be utilized in turn to highlight aspects of the failure criterion 
discussed herein. 
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II.  Inelastic Constitutive Model 

An incremental modeling approach is presented here as a first step in capturing multi-
axial non-linear constitutive behavior for graphite. This approach ignores the effects from 
exposure to radiation, which can be modeled through the use of continuum damage mechanics.  
The incremental non-linear inelastic constitutive model also ignores rate effects and assumes that 
any time dependent phenomenon exhibited by nuclear graphite used in high temperature service 
conditions can be captured using other modeling techniques. The reader is directed to the 
viscoplastic models of Bodner and Partom (1975), Chaboche (1977) and Robinson (1978) for 
rate dependent modeling techniques. 

There are three fundamental components necessary for an incremental inelastic 
constitutive law based on the work hardening concepts. First is a threshold function. An isotropic 
threshold function is presented below and an anisotropic extension of the isotropic function 
follows. The second component is a hardening rule - also known as an evolutionary law. A 
hardening rule provides a mathematical description of how a threshold function evolves (i.e., 
how a material “hardens”) as inelastic deformations accumulate.  The third component is a flow 
rule. Chen and Han (1995) as well as Mendelsohn (1968) outlined how a flow rule relates 
incremental strain and the state of stress with predefined inelastic state variables. Their approach 
with modifications is followed here. Two types of flow rules dominate inelastic modeling. The 
first is referred to as an associated flow rule. With an associated flow rule the threshold function 
serves as a potential function.  Inelastic constitutive models for ductile metals historically have 
been modeled using associated flow rules. The second type is known as a non-associated flow 
rule. Constitutive relationships for soils that follow a Drucker-Prager threshold function typically 
utilize a non-associated flow rule. With nuclear graphite an associated flow rule is adopted. 

For The Green and Mkrtichian (1977) threshold function the dependence of the scalar 
valued function with a dependence stipulated by  

  iij aff ,  (46) 

where vector ai  is a direction vector associated with a principle stress direction.  Rivlin and 
Smith (1969) as well as Spencer (1971) show that the integrity basis of this function is 

ଵܫ  ൌ  ௞௞ (47)ߪ

ଶܫ  ൌ  ௝௜ (48)ߪ௜௝ߪ

ଷܫ  ൌ  ௞௜ (49)ߪ௝௞ߪ௜௝ߪ

ସܫ  ൌ ܽ௜ ௝ܽߪ௝௜ (50) 

and 

ହܫ  ൌ ܽ௜ ௝ܽߪ௝௞ߪ௞௜ (51) 
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Index notation is utilized here and the repeated subscripts indicate summation over the range of 
one to three. Green and Mkrtichian (1977) omitted invariant I3 from their threshold function 
since this invariant is cubic in stress. From a historical perspective ignoring invariants cubic in 
stress has had precedence in the derivation of constitutive models. In addition, those invariants 
linear in stress enter the functional dependence as squared terms or as products with another 
invariant linear in stress.  The direction of the eigenvector ai appears through the second order 
tensor, aiaj. 

The underlying concept is that the response of the material depends on the stress state and 
whether the principal stresses are tensile or compressive.  Principal stresses identified here as σ1, 
σ2, and σ3 follow the standard convention that they are ordered numerically based on their 
algebraic value, i.e., 

 σ1  ≥  σ2  ≥  σ3 (52) 

The principle stress space is divided into four regions. Following Green and Mkrtichian (1977) 
the regions and associated threshold functions are listed below. In the first Region where all of 
the principle stresses are tensile, i.e., 

 Region #1     σ1  ≥  σ2  ≥  σ3 ≥ 0        f = f1(σij )  (53) 

a direction vector is unnecessary. A second Region was identified where 

 Region #2    σ1  ≥  σ2  ≥ 0 ≥  σ3    f = f2(σij , aiaj ) (54) 

In Region #2 Green and Mkrtichian (1977) associated the direction vector ai with the 
compressive principle stress σ3. Thus for this Region 

 ai  = (0, 0, 1) (55) 

This assumes that the principle stress orientations align with the current Cartesian coordinate 
system, i.e., σ1 is in the direction of x1, σ2 is in the direction of x2, and σ3 is in the direction of x3. 
A third Region was identified where 

 Region #3       σ1 ≥ 0 ≥ σ2 ≥ σ3    f = f3(σij , aiaj )  (56) 

In Region #3 Green and Mkrtichian (1977) associated the direction vector ai with the tensile 
principle stress σ1. Thus 

 ai  = (1, 0, 0) (57)  

Finally, in the fourth Region all principle stresses are compressive, i.e., 

 Region #4            0 ≥ σ1  ≥  σ2  ≥  σ3         f = f4(σij )   (58) 

and a direction vector is once again unnecessary 
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Moreover, Green and Mkrtichian (1977) specifically defined the threshold function for 
Region #1 as 

 ଵ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ଶܫଵܤ െ  ଶ  (59)ܭ

The threshold function for Region #2 was defined as 

 ଶ݂ ൌ
ଵ

ଶ
ଵܫଶܣ

ଶ ൅ ଶܫଶܤ ൅ ସܫଵܫଶܥ ൅ ହܫଶܦ െ  ଶ  (60)ܭ

The threshold function for Region #3 was defined as 

 ଷ݂ ൌ
ଵ

ଶ
ଵܫଷܣ

ଶ ൅ ଶܫଷܤ ൅ ସܫଵܫଷܥ ൅ ହܫଷܦ െ  ଶ  (61)ܭ

and the threshold function for Region #4 was defined as 

 ସ݂ ൌ
ଵ

ଶ
ଵܫସܣ

ଶ ൅ ଶܫସܤ െ  ଶ  (62)ܭ

Note that all terms are quadratic in stress even though I1 and I4 are linear in stress. The material 
constants A1, A2, A3, A4, B1, B2, B3, B4, C2, C3, D2, and D3 are characterized with simple 
mechanical tests.  The parameter K is an inelastic state variable.  For a virgin material, the value 
of the state variable is equal to one.  The constants just mentioned will be characterized by initial  
threshold stresses obtained from the mechanical tests on virgin materials.  In the section 
discussing the inelastic constitutive model the value of K will change according to an 
evolutionary law specified below based on the accumulation of inelastic work under load. 

This set of piecewise continuous threshold functions must satisfy two conditions along 
the boundaries where they meet.  The first condition is that the threshold functions must be equal 
along mutual boundaries.  The second condition is that the tangents, the directional derivatives of 
the threshold functions, must be single valued along a mutual boundary. The second condition 
dominates the development of the relationships between the twelve constants.  In the following 
section where an associated flow rule is presented the conditions on the tangents will guarantee 
that increments in the inelastic strain will be equal at mutual boundaries of the piecewise 
threshold function.  It is noted at this point that Region #1and Region #4 do not share a boundary 
except at the origin of principle stress space where all regions meet. 

II.1  Threshold Function - Isotropic Formulation 

The following relationships between the functional constants have been derived during 
the course of this work  

ଵܣ  ൌ ଶܣ ൌ ଷܣ ൌ  ସ (63)ܣ

ଵܤ  ൌ  ଶ (64)ܤ
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ଷܤ  ൌ  ସ (65)ܤ

ଵܤ  ൌ ସܤ ൅  ଷ (66)ܦ

ସܤ  ൌ ଵܤ ൅  ଶ (67)ܦ

ଶܥ  ൌ ଷܥ ൌ 0 (68) 

and 

ଶܦ  ൌ െܦଷ (69) 

There are three independent constants in the expressions above. The independent 
constants are A1, B1, and D2. The relationships above can be found in Green and Mkrtichian 
(1977). The next step is characterizing these constants in terms of threshold stresses associated 
with simple mechanical tests. The threshold functions are rewritten in terms of these three 
independent constants as follows: 

 ଵ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ଶܫଵܤ െ  ଶ (70)ܭ

 ଶ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ଶܫଵܤ ൅ ହܫଶܦ െ  ଶ (71)ܭ

 ଷ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ሺܤଵ ൅ ଶܫଶሻܦ ൅ ሺെܦଶሻܫହ െ  ଶ (72)ܭ

and 

 ସ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ሺܤଵ ൅ ଶܫଶሻܦ െ  ଶ (73)ܭ

Three material tests need to be performed to define the three independent constants.  The three 
tests are uniaxial tension, uniaxial compression, and biaxial compression.  These test are 
assumed to be performed on a virgin material. For a virgin material the state variable K is equal 
to one. 

For a uniaxial tensile test where the stress applied is equal to the tensile threshold stress 

௜௝ߪ  ൌ ൥
௧ߪ 0 0
0 0 0
0 0 0

൩ (75) 

The invariants of this stress state are 

ଵܫ  ൌ  ௧ (76)ߪ

and 
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ଶܫ  ൌ  ௧ଶ (77)ߪ

Setting equation (70) equal to zero with K equal to one and using the invariants above yields 

 
ଵ

ଶ
௧ଶߪଵܣ ൅ ௧ଶߪଵܤ െ 1 ൌ 0 (78) 

Rearranging yields 

 
ଵ

ଶ
ଵܣ ൅ ଵܤ ൌ

ଵ

ఙ೟
మ (79) 

The next test utilized in identifying the unknown constants is a uniaxial compression test 
where the applied stress is equal to the compressive threshold stress.  Hence, 

௜௝ߪ  ൌ ൥
௖ߪ 0 0
0 0 0
0 0 0

൩ (80) 

The first two invariants of this stress state are 

ଵܫ  ൌ  ௖ (81)ߪ

and 

ଶܫ  ൌ  ௖ଶ (82)ߪ

Setting equation (73) equal to zero with K equal to one yields 

 
ଵ

ଶ
௖ଶߪଵܣ ൅ ሺܤଵ ൅ ௖ଶߪଶሻܦ െ 1 ൌ 0 (83) 

Rearranging yields 

 
ଵ

ଶ
ଵܣ ൅ ଵܤ ൅ ଶܦ ൌ

ଵ

ఙ೎
మ (84) 

The last test is an equal biaxial compression test where 

௜௝ߪ  ൌ ൥
௕௖ߪ 0 0
0 ௕௖ߪ 0
0 0 0

൩ (85) 

The first two invariants of this stress state are 

ଵܫ  ൌ  ௕௖ (86)ߪ2

and 
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ଶܫ  ൌ ௕௖ߪ2
ଶ  (87) 

Setting equation (76) equal to zero with K equal to one yields 

 
ଵ

ଶ
௕௖ሻଶߪଵሺ2ܣ ൅ 2ሺܤଵ ൅ ௕௖ߪଶሻܦ

ଶ െ 1 ൌ 0 (88) 

Rearranging yields 

ଵܣ  ൅ ଵܤ ൅ ଶܦ ൌ
ଵ

ଶఙ್೎
మ  (89) 

Equations (79), (84), and (89) are three equations in three unknowns.  Solution of these three 
independent equations results in 

ଵܣ  ൌ
ଵ

ఙ್೎
మ െ

ଶ

ఙ೎
మ (90) 

ଵܤ  ൌ
ଵ

ఙ೟
మ ൅

ଵ

ఙ೎
మ െ

ଵ

ଶఙ್೎
మ  (91) 

and 

ଶܦ  ൌ
ଵ

ఙ೎
మ െ

ଵ

ఙ೟
మ (92) 

With these constant defined in terms of mechanical test parameters a map of the threshold 
surface can be constructed. Graphically it is convenient to plot the function in principle stress 
space. In a principle stress space the six components of the stress tensor can be represented by 
the stress vector (3ߪ ,2ߪ ,1ߪ).  Figure 2 depicts a threshold surface projected onto the 2ߪ - 1ߪ 
stress plane.  For this figure the three threshold stresses discussed above were arbitrarily set at ߪt 
= 1.0 MPa, ߪc = 5.0 MPa, and ߪbc = 5.5 MPa.  These threshold stresses are depicted in Figure 2. 
Stress states within the surface represent elastic states of stress.  Different behavior in tension 
and compression are easily accommodated with this modeling approach.  
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Figure 2  Isotropic virgin threshold surface 

Figure 3 depicts a series of nested surfaces associated with different values of the state 
variable K.  The inside surface has a K-value of one. The middle surface has a K-value of two.  
The outside surface has a K-value of three.  As the inelastic state variable increases, values for 
the threshold stresses ߪt, ߪc, and ߪbc increase accordingly.  The values of the threshold stress will 
change according to the evolutionary laws outlined below. This nesting of surfaces will be 
revisited in that section of this work. 
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Figure 3  Nested Isotropic Threshold Surfaces 

II.2  Threshold Function - Anisotropic Formulation 

Burchell (2007) and others have indicated over the year, certain types of graphite exhibit 
anisotropic behavior.  The focus in this section is to extend the isotropic constitutive model to 
incorporate anisotropy, specifically transverse isotropy.  To include transversely isotropy 
behavior the threshold function must be constructed to include a dependence on a preferred 
material direction.  The material direction is designated through a second direction vector, di.  
The dependence of the threshold function is extended such that 

 ݂ ൌ ݂ሺߪ௜௝, ܽ௜ ௝ܽ, ݀௜ ௝݀ሻ (93) 

The definition of the unit vector ai is the same as in the previous section.  Rivlin and Smith 
(1969) as well as Spencer (1971) show that for a scalar valued function with dependence 
stipulated by equation (93) the integrity basis is 

ଵܫ  ൌ  ௞௞ (94)ߪ

ଶܫ  ൌ  ௝௜ (95)ߪ௜௝ߪ

ଷܫ  ൌ  ௞௜ (96)ߪ௝௞ߪ௜௝ߪ
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ସܫ  ൌ ܽ௜ ௝ܽߪ௝௜ (97) 

ହܫ  ൌ ܽ௜ ௝ܽߪ௝௞ߪ௞௜ (98) 

଺ܫ  ൌ ݀௜ ௝݀ߪ௝௜ (99) 

଻ܫ  ൌ ݀௜ ௝݀ߪ௝௞ߪ௞௜ (100) 

ܫ଼  ൌ ܽ௜ ௝ܽ ௝݀݀௞ߪ௞௜ (101) 

and 

ଽܫ  ൌ ܽ௜ ௝ܽ ௝݀݀௞ߪ௞௠ߪ௠௜ (102) 

The invariant I3 is omitted again from this threshold function since this invariant is cubic in 
stress. Once again those invariants linear in stress enter the functional dependence as squared 
terms or as products with another invariant linear in stress. Therefore the anisotropic threshold 
function has the following dependence 

 ݂൫ߪ௜௝, ܽ௜ ௝ܽ, ݀௜ ௝݀൯ ൌ ݂ሺܫଵ, ,ଶܫ ,ସܫ ,ହܫ ,଺ܫ ,଻ܫ ܫ଼ ,  ଽሻ (103)ܫ

The direction and the sense of the eigenvector, ai and its reflection are important.  The preferred 
material direction and its reflection are immaterial and the dependence of di appears through the 
second order tensor. 

The underlying concept is that the response of the material depends on the stress state, a 
preferred material direction and whether the principal stresses are tensile or compressive. 
Principle stresses identified here as σ1, σ2, and σ3 follow the standard convention that they are 
ordered numerically based on their algebraic value, i.e., 

ଵߪ  ൒ ଶߪ ൒  ଷ (104)ߪ

The principle stress space is divided into four regions. The regions and associated threshold 
functions are listed below. In the first region where all of the principle stresses are tensile, i.e., 

 Region	#1											ߪଵ ൒ ଶߪ ൒ ଷߪ ൒ 0									݂	 ൌ 	 ଵ݂ሺߪ௜௝	, ݀௜ ௝݀	ሻ	 (105) 

a direction vector for the principle stress direction is unnecessary. A second region is identified 
where 

 Region	#2									ߪଵ ൒ ଶߪ ൒ 0 ൒ 	݂								ଷߪ ൌ 	 ଶ݂ሺߪ௜௝, ܽ௜ ௝ܽ, ݀௜ ௝݀ሻ (106) 

In Region #2 the direction vector ai is associated with the compressive principle stress σ3.  Thus 
for this region 
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 ܽ௜ 		ൌ 	 ሺ0, 0, 1ሻ (107) 

A third region is identified where 

 Region	#3								ߪଵ ൒ 0 ൒ ଶߪ ൒ 	݂								ଷߪ ൌ 	 ଷ݂ሺߪ௜௝, ܽ௜ ௝ܽ, ݀௜ ௝݀ሻ	 (108)  

In Region #3 the direction vector ai is associated with the tensile principle stress direction σ1. 
Thus for this region 

 ܽ௜ 		ൌ 	 ሺ1, 0, 0ሻ (109)  

Finally, in the fourth Region all principle stresses are compressive, i.e., 

 Region	#4									0 ൒ ଵߪ ൒ ଶߪ ൒ 	݂								ଷߪ ൌ 	 ସ݂ሺߪ௜௝, ݀௜ ௝݀ሻ	  (110) 

and a direction vector for the principle stress direction is unnecessary. 

Borrowing from the original form of the Green-Mkrtichian (1977) model, the threshold 
function for Region #1 is defined as 

 ଵ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ଶܫଵܤ ൅ ଺ܫଵܫଵܧ ൅ ଻ܫଵܨ െ  ଶ (111)ܭ

The threshold function for Region #2 is defined as 

 ଶ݂ ൌ
ଵ

ଶ
ଵܫଶܣ

ଶ ൅ ଶܫଶܤ ൅ ସܫଵܫଶܥ ൅ ହܫଶܦ ൅ ଺ܫଵܫଶܧ ൅ ଻ܫଶܨ ൅ ܫଵ଼ܫଶܩ ൅ ଽܫଶܪ െ  ଶ (112)ܭ

The threshold function for Region #3 is defined as 

 ଷ݂ ൌ
ଵ

ଶ
ଵܫଷܣ

ଶ ൅ ଶܫଷܤ ൅ ସܫଵܫଷܥ ൅ ହܫଷܦ ൅ ଺ܫଵܫଷܧ ൅ ଻ܫଷܨ ൅ ܫଵ଼ܫଷܩ ൅ ଽܫଷܪ െ  ଶ (113)ܭ

and the threshold function for Region #4 is defined  as 

 ସ݂ ൌ
ଵ

ଶ
ଵܫସܣ

ଶ ൅ ଶܫସܤ ൅ ଺ܫଵܫସܧ ൅ ଻ܫସܨ െ  ଶ (114)ܭ

These forms for the threshold functions were chosen because they simplify to the threshold 
functions developed by Green and Mkrtichian (1977) in the absence of anisotropy.  Note that all 
terms are quadratic in stress. The material constants A1, A2, A3, A4, B1, B2, B3, B4, C2, C3, D2, D3, 
E1, E2, E3, E4, F1, F2, F3, F4, G2, G3, H2 and H3 are characterized with simple mechanical tests. 
The parameter K is an inelastic state variable associated with isotropic hardening. For a virgin 
material, the value of the state variable is equal to one. The constants just mentioned will be 
characterized by initial threshold stresses obtained from the mechanical tests on virgin materials. 
In the section discussing the inelastic constitutive model the value of K will change according to 
a specified evolutionary law (see below). 
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This set of piecewise continuous threshold functions must satisfy two conditions along 
the boundaries where they meet.  The first condition is that the threshold functions must be equal 
along mutual boundaries. The second condition is that the tangents, the directional derivatives of 
the threshold functions must be single valued along a mutual boundary. The second condition 
dominates the development of the relationships between the twenty-four constants. In the 
following section where an associated flow rule is presented the conditions on the tangents will 
guarantee that threshold function.  It is noted at this point that Region #1 and Region #4 do not 
share a boundary except at the origin of principle stress space where all regions meet. 

The tangents for these functions are calculated by taking the derivatives with respect to 
the Cauchy stress, σij. For all four threshold functions the partial derivatives are calculated as 
follows using the chain rule 

 
డ௙

డఙ೔ೕ
ൌ డ௙

డூభ

డூభ
డఙ೔ೕ

൅ డ௙

డூమ

డூమ
డఙ೔ೕ

൅ డ௙

డூర

డூర
డఙ೔ೕ

൅ డ௙

డூఱ

డூఱ
డఙ೔ೕ

൅ డ௙

డூల

డூల
డఙ೔ೕ

൅ డ௙

డூళ

డூళ
డఙ೔ೕ

൅ డ௙

డூఴ

డூఴ
డఙ೔ೕ

൅ డ௙

డூవ

డூవ
డఙ೔ೕ

 (115) 

For equation (111) 

 
డ௙భ
డூభ

ൌ ଵܫଵܣ ൅  ଺ (116)ܫଵܧ

 
డ௙భ
డூమ

ൌ  ଵ (117)ܤ

 
డ௙భ
డூల

ൌ  ଵ (118)ܫଵܧ

 
డ௙భ
డூళ

ൌ  ଵ (119)ܨ

 
డூభ
డఙ೔ೕ

ൌ  ௜௝ (120)ߜ

 
డூమ
డఙ೔ೕ

ൌ  ௜௝ (121)ߪ2

 
డூల
డఙ೔ೕ

ൌ ݀௜ ௝݀ (122) 

and 

 
డூళ
డఙ೔ೕ

ൌ ݀௞݀௜ߪ௝௞ ൅ ௝݀݀௠ߪ௠௜ (123) 

Thus equation (115) takes the form 

 
డ௙భ
డఙ೔ೕ

ൌ ሺܣଵܫଵ ൅ ௜௝ߜ଺ሻܫଵܧ ൅ ௜௝ߪଵܤ2 ൅ ଵ݀௜ܫଵܧ ௝݀ ൅ ௝௞ߪଵሺ݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜ሻ (124) 
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In a similar fashion for the threshold function f2 

 
డ௙మ
డூభ

ൌ ଵܫଶܣ ൅ ସܫଶܥ ൅ ଺ܫଶܧ ൅ ܫଶ଼ܩ  (125) 

 
డ௙మ
డூమ

ൌ  ଶ (126)ܤ

 
డ௙మ
డூర

ൌ  ଵ (127)ܫଶܥ

 
డ௙మ
డூఱ

ൌ  ଶ (128)ܦ

 
డ௙మ
డூల

ൌ  ଵ (129)ܫଶܧ

 
డ௙మ
డூళ

ൌ  ଶ (130)ܨ

 
డ௙మ
డூఴ

ൌ  ଵ (131)ܫଶܩ

 
డ௙మ
డூవ

ൌ  ଶ (132)ܪ

 
డூర
డఙ೔ೕ

ൌ ܽ௜ ௝ܽ (133) 

 
డூఱ
డఙ೔ೕ

ൌ ܽ௞ܽ௜ߪ௝௞ ൅ ௝ܽܽ௠ߪ௠௜ (134) 

 
డூఴ
డఙ೔ೕ

ൌ ௝ܽܽ௤݀௤ ௝݀ (135) 

and 

 
డூవ
డఙ೔ೕ

ൌ ܽ௣ܽ௤݀௤݀௜ߪ௝௣ ൅ ௝ܽܽ௤݀௤݀௥ߪ௥௜ (136) 

Equation (115) takes the form 

 
డ௙మ
డఙ೔ೕ

ൌ ሺܣଶܫଵ ൅ ସܫଶܥ ൅ ଺ܫଶܧ ൅ ܫଶ଼ܩ ሻߜ௜௝ ൅ ௜௝ߪଶܤ2 ൅ ଵܽ௜ܫଶܥ ௝ܽ ൅ ௝௞ߪଶ൫ܽ௞ܽ௜ܦ ൅ ௝ܽܽ௠ߪ௠௜൯ ൅

ଵ݀௜ܫଶܧ ௝݀ ൅ ௝௞ߪଶ൫݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜൯ ൅ ଵܫଶܩ ௝ܽܽ௤݀௤݀௜ ൅ ௝௣ߪଶሺܽ௣ܽ௤݀௤݀௜ܪ ൅ ܽ௜ܽ௤݀௤݀௥ߪ௥௜ሻ (137) 

for the threshold function f2.  For the threshold function f3 

 
డ௙య
డூభ

ൌ ଵܫଷܣ ൅ ସܫଷܥ ൅ ଺ܫଷܧ ൅ ܫଷ଼ܩ  (137) 
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డ௙య
డூమ

ൌ  ଷ (138)ܤ

 
డ௙య
డூర

ൌ  ଵ (139)ܫଷܥ

 
డ௙య
డூఱ

ൌ  ଷ (140)ܦ

 
డ௙య
డூల

ൌ  ଵ (141)ܫଷܧ

 
డ௙య
డூళ

ൌ  ଷ (142)ܨ

 
డ௙య
డூఴ

ൌ  ଵ (143)ܫଷܩ

and 

 
డ௙య
డூవ

ൌ  ଷ (144)ܪ

Equation (115) takes the form 

 
డ௙య
డఙ೔ೕ

ൌ ሺܣଷܫଵ ൅ ସܫଷܥ ൅ ଺ܫଷܧ ൅ ܫଷ଼ܩ ሻߜ௜௝ ൅ ௜௝ߪଷܤ2 ൅ ଵܽ௜ܫଷܥ ௝ܽ ൅ ௝௞ߪଷ൫ܽ௞ܽ௜ܦ ൅ ௝ܽܽ௠ߪ௠௜൯ ൅

ଵ݀௜ܫଷܧ ௝݀ ൅ ௝௞ߪଷ൫݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜൯ ൅ ଵܫଷܩ ௝ܽܽ௤݀௤݀௜ ൅ ௝௣ߪଷ൫ܽ௣ܽ௤݀௤݀௜ܪ ൅ ௝ܽܽ௤݀௤݀௥ߪ௥௜൯		(145) 

for the threshold function f2.  For the threshold function f4 

 
డ௙ర
డூభ

ൌ ଵܫସܣ ൅  ଺ (146)ܫସܧ

 
డ௙ర
డூమ

ൌ  ସ (147)ܤ

 
డ௙ర
డூల

ൌ  ଵ (148)ܫସܧ

and 

 
డ௙ర
డூళ

ൌ  ସ (149)ܨ

Thus equation (115) takes the form 

 
డ௙ర
డఙ೔ೕ

ൌ ሺܣସܫଵ ൅ ௜௝ߜ଺ሻܫସܧ ൅ ௜௝ߪସܤ2 ൅ ଵ݀௜ܫସܧ ௝݀ ൅ ௝௞ߪସሺ݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜ሻ (150) 
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for threshold function f4. 

Summarizing 

 
డ௙భ
డఙ೔ೕ

ൌ ሺܣଵܫଵ ൅ ௜௝ߜ଺ሻܫଵܧ ൅ ௜௝ߪଵܤ2 ൅ ଵ݀௜ܫଵܧ ௝݀ ൅ ௝௞ߪଵሺ݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜ሻ (151) 

 
డ௙మ
డఙ೔ೕ

ൌ ሺܣଶܫଵ ൅ ସܫଶܥ ൅ ଺ܫଶܧ ൅ ܫଶ଼ܩ ሻߜ௜௝ ൅ ௜௝ߪଶܤ2 ൅ ଵܽ௜ܫଶܥ ௝ܽ ൅ ௝௞ߪଶ൫ܽ௞ܽ௜ܦ ൅ ௝ܽܽ௠ߪ௠௜൯ ൅

ଵ݀௜ܫଶܧ ௝݀ ൅ ௝௞ߪଶ൫݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜൯ ൅ ଵܫଶܩ ௝ܽܽ௤݀௤݀௜ ൅ ௝௣ߪଶሺܽ௣ܽ௤݀௤݀௜ܪ ൅ ܽ௜ܽ௤݀௤݀௥ߪ௥௜ሻ (152) 

 
డ௙య
డఙ೔ೕ

ൌ ሺܣଷܫଵ ൅ ସܫଷܥ ൅ ଺ܫଷܧ ൅ ܫଷ଼ܩ ሻߜ௜௝ ൅ ௜௝ߪଷܤ2 ൅ ଵܽ௜ܫଷܥ ௝ܽ ൅ ௝௞ߪଷ൫ܽ௞ܽ௜ܦ ൅ ௝ܽܽ௠ߪ௠௜൯ ൅

ଵ݀௜ܫଷܧ ௝݀ ൅ ௝௞ߪଷ൫݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜൯ ൅ ଵܫଷܩ ௝ܽܽ௤݀௤݀௜ ൅ ௝௣ߪଷ൫ܽ௣ܽ௤݀௤݀௜ܪ ൅ ௝ܽܽ௤݀௤݀௥ߪ௥௜൯		(153) 

and 

 
డ௙ర
డఙ೔ೕ

ൌ ሺܣସܫଵ ൅ ௜௝ߜ଺ሻܫସܧ ൅ ௜௝ߪସܤ2 ൅ ଵ݀௜ܫସܧ ௝݀ ൅ ௝௞ߪସሺ݀௞݀௜ܨ ൅ ௝݀݀௠ߪ௠௜ሻ (154) 

Equations (151) through (154) represent four second order tensor equation in terms of twenty-
four unknowns.  In what follows, a sufficient number of scalar expression embedded in these 
tensor equation will be extracted in order to define the twenty-four scalar unknowns.  It is noted 
prior to the development that several constants are not independent 

II.3 Hardening Rule 

Consider a graphite test specimen that is uniaxially loaded and then unloaded under 
tension.  Tensile stress-strain data obtained from Bratton (2009) for H-451 graphite is depicted in 
Figure 4. In this figure I represents the permanent strain that remains after unloading, E  
represents elastic, or recoverable strain, and σ∗ is the maximum total stress applied over the load 
cycle. From the figure the total strain is 

 ߳௧ ൌ ߳ூ ൅ ߳ா   (155) 

Casting this expression into an incremental form leads to 

 ݀߳௧ ൌ ݀߳ூ ൅ ݀߳ா  (156) 

The key is quantifying the incremental inelastic strain, dI . The model that quantifies this 
mathematically is known as the flow rule. 
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Figure 4 Uniaxial Tension Test Data from Bratton (2009) 

A loading rule must be established  before inelastic strains can be quantified.  The 
loading rule determines whether or not inelastic strains occur along a load path.  The boundary of 
the threshold function defines regions of elastic states of stress.  Stress states outside of the 
surface of the threshold function are mathematically inaccessible.  States of stress within the 
threshold surface are elastic states of stress.  The inaccessible states of stress can be subsequently 
embedded within the surface by evolving the threshold function.  This evolution process 
incorporates stress states along the functional boundary first and then eventually migrates the 
functional boundary sufficiently so that stress states beyond the boundary are assimilated.  The 
threshold-potential function therefore must be dependent on stress as well as on a number of 
inelastic state variables that are grouped and defined by the vector Hα, i.e., 

 ݂ ൌ ݂൫ߪ௜௝, ߙ							ఈ൯ܪ ൌ 1, 2, 3, … , ݊   (157) 

How a material hardens influences the number of state variables that comprise the vector Hα.  
Isotropic hardening and kinematic hardening are the two classic evolutionary schemes.  Isotropic 
hardening requires one state variable, kinematic hardening requires a second order tensor of state 
variables with six distinct components.  Both types of hardening  schemes are captured  in the 
stress-strain curves presented in Figure 5 and Figure 6.  Uniaxial stress is increased beyond the 
initial threshold stress and the stress-strain curve becomes progressively  nonlinear.  Unloading 
and subsequent reloading of the material produces a larger threshold stress than found in the 
virgin material.  The difference between the initial  threshold stress and subsequent threshold 
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stress values stresses indicates  the material is hardening.  This behavior can be modeled by the 
surface of the threshold potential function expanding equally in all direction.  An equally 
expansive threshold potential function in all directions is indicative of isotropic hardening. 

One can unload in a uniaxial fashion from tension and reload into the compressive region 
of the stress space as shown in Figure 6.  A material may respond with a lower magnitude of the 
threshold  stress in compression than in tension.  This is the so-called Bauschinger effect that is 
associated with kinematic hardening.  Kinematic hardening will not be addressed here although 
the model framework could accommodate this type of hardening.  The reader should be mindful 
that for graphite the virgin threshold stress in compression is larger than the virgin threshold 
stress in tension.  For this reason this effort focuses on isotropic  modeling in order to track the 
different behavior of graphite in tension and compression.  Details on specific aspects of the 
evolutionary law for isotropic hardening appear in a later section. 

 

Figure 5 Notion of Hardening 
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Figure 6  Kinematic Hardening and Bauschinger Effects 

 

Figure 7  Possible directions for the stress increment dσij 
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II.4  Loading Rule 

In Figure 7 an initial stress state (σ∗ ) is depicted that lies on the threshold surface and 
several possible increments in stress, denoted  as dσij are shown.  In general a stress increment 
can be directed to the inside of the threshold-potential function (1dσij ), tangent to the threshold-
potential function (2dσij ), or in an outward direction to the threshold-potential function (3dσij ).  
A load path that lies completely inside or traverses along the surface of the threshold function 
will  accrue elastic strains. Inelastic strains occur when the stress increment is an outward normal 
vector (3dσij ) to the threshold surface.  The stress state σ∗	on the surface of a threshold function 
such that 

 ݂൫ߪ௜௝
∗ , ఈଵ൯ܪ	 ൌ 0  (158) 

A change in the stress state that  does  not  change the inelastic state variable H
1 corresponds to 

unloading into the elastic stress Region.  As unloading takes place the value of the scalar 
threshold function is less than zero for elastic states of stress i.e., 

 ݂ ቀߪ௜௝
∗ 		൅ 	 ଵ݀ߪ௜௝, ఈభܪ ቁ ൏ 0     (159) 

Correspondingly the differential change in the threshold function is negative, i.e., 

 ݂݀ ൏ 0    (160) 

With 

 ݂݀ ൌ డ௙

డఙ೔ೕ
	 ଵ݀ߪ௜௝ ൅

డ௙

డுഀ
 ఈ   (161)ܪ݀	

and the fact that the inelastic state does not change, i.e., 

ఈܪ݀  ≡ 0   (162) 

then 

 ݂݀ ൌ ൝ డ௙
డఙ೔ೕ

ฬ
ఙ೔ೕ
∗
ൡ	 ଵ݀ߪ௜௝      (163)	

൏ 0 

The inner product on the right  hand side of equation (163) can be  interpreted graphically from 
the general schematic in Figure 7.  If the incremental load vector is directed inwards the angle 
between the incremental load vector and the gradient to the threshold surface is greater than 90◦, 
and this corresponds to unloading. 

However, if 
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ఈܪ݀  ് 0   (164) 

and the inelastic state changes from H1 to H2 , which is indicated in Figure 8, then the new 
threshold surface can be characterized as 

 ݂൫ߪ௜௝
∗ ൅	 ଷ݀ߪ௜௝, ఈଵܪ ൅ ఈ൯ܪ݀ ൌ ݂൫ߪ௜௝

∗ ൅ ଷ݀ߪ௜௝,  ఈଶ൯    (165)ܪ

and inelastic strains accrue, i.e., 

 ݀߳ூ ് 0     (166) 

 

Figure 8  Inelastic Loading 

The interpretation of the inner product of the gradient to the threshold function and the increment 
in the stress vector mathematically leads to 

 ൝ డ௙
డఙ೔ೕ

ฬ
ఙ೔ೕ
∗
ൡ 	 ଷ݀ߪ௜௝ ൒ 0    (167) 

for a change in inelastic state.  Here the angle between the incremental load vector and the 
gradient to the threshold function is less than 90◦. 

If an increment in stress is imposed such that inelastic strains accrue, and the inelastic 
state of the material changes, then subsequent stress states must still lie on the surface of an 
evolved threshold-potential function as shown in Figure 8.  This requirement is known as the 
consistency condition, i.e., the current state of stress must consistently lie on the surface of the 
function for inelastic strains to occur.  The consistency condition can be described  
mathematically in a simple manner by realizing that taking the differential of 
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 ݂ ൌ 0    (168) 

leads to 

 

 

0

0

0





df

fd

  (169) 

Thus equation (161) can be set equal to zero, i.e., 

 ݂݀ ൌ డ௙

డఙ೔ೕ
௜௝ߪ݀	 ൅

డ௙

డுഀ
	ఈ          (170)ܪ݀	

ൌ 0 

and this last expression is the mathematical description of the consistency condition. The 
consistency condition is introduced here as a part of the discussion of a loading rule for 
convenience.  It is used later to quantify the amount of inelastic strain given an increment in the 
stress state. 

 

Figure 9  Inelastic Loading 

Figure 9 shows a loading path that starts at an elastic state of stress identified as σij
a . The 

material is then loaded to a level of stress identified as σij
b which lies on the threshold surface, 

and then an incremental load dσij is applied.  The increment in stress gives rise to an increment in 
inelastic strain and changes the inelastic state of the material.  This change of inelastic state 
impacts the stress-strain curve since the material hardens.  The presence of inelastic strains can 
be detected  through the nonlinear behavior of the stress-strain curve or by unloading the 
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material and noting the permanent strains. The incremental  stress dσij shown in this figure 
evolves the threshold function.  After dσij is applied the material is then unloaded to the original 
stress state σa .  Since the stress states along the path from σa to σb are all within the threshold 
surface, the material responds in an elastic manner along this segment of the load path.  The 
inelastic behavior of the material along this multiaxial stress cycle, i.e., from σa to σb, to (σb + 
dσij) and finally back to σa is best described ij mathematically by 

  (171) 

or 

  (172) 

Equations (171) and (172) define the loading rule in general terms.  The inelastic history of the 
material is tracked by the changes in the state variables Hα that subsequently impose changes to 
the threshold function.  The increment of elastic strain due to an increment  in stress and the 
evolutions in the inelastic state variable for an isotropic material with different behavior in 
tension and compression are mathematically described and quantified in the next section. 

II.5 Incremental Evolutionary Law 

It has been implied throughout that incremental changes in inelastic strain are 
accompanied by changes in the inelastic state variable.  Mathematically the link between 
inelastic strain and the change in the state variable can be simply expressed as 

  ݀߳௜௝
ூ ൌ ܳ௜௝ఈ݀ܪఈ (173) 

or after inverting equation (173) 

ఈܪ݀  ൌ ௜௝ఈ݀߳௜௝ܨ
ூ 	 (174) 

where 

௜௝ఈܨ  ൌ ܳ௜௝ఈ
ିଵ 	 (175) 
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The tensor functions Qijα, or Fijα, are dependent on the current stress state and the current 
inelastic state of the material, i.e., 

௜௝ఈܨ  ൌ ,௜௝ߪ௜௝ఈ൫ܨ   (176)	ఈ൯ܪ

If isotropic hardening is assumed then the state variable vector Hα is represented by a scalar 
variable K . 

ఈୀଵܪ  ൌ  (177) 	ܭ

Taking the differential of both sides leads to 

ఈୀଵܪ݀  ൌ  (178) 	ܭ݀

and 

ܭ݀  ൌ ,௜௝ߪ௜௝൫ܨ ൯݀߳௜௝ܭ
ூ 	 (179) 

The right hand side of this last equation is a scalar quantity where the tensor function Fij depends 
on the state of stress and the current inelastic state.  Equation (179) states that if there are no 
inelastic strains then there is no change in the state variable, i.e., if 

  0I
ijd  (180) 

then 

ܭ݀  ൌ 0	 (181) 

A simple assumption is made at this point for the form of Fij in equation (179).  Let  

,௠௡ߪ௜௝ሺܨ  ሻܭ ൌ   (182)	௜௝ߪሻܭሺܨ

so that the tensor function Fij is a scalar multiple of the applied stress state.  This will lead to 
simple interpretation of the scalar multiplier F.  Now 

ܭ݀  ൌ ௜௝݀߳௜௝ߪሻܭሺܨ
ூ 	 (183) 

Based on derivations provided in a following section, the scalar multiplier function F is 
dependent on the current tangent of the stress-strain curve. 

II.6 Isotropic Flow Rule 

The flow law, the inelastic stress-strain relationship, is derived using the partial 
derivatives of the threshold-potential, i.e., 
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  
ij

iij

ij

I
ij

Kaf
d

f
dd



















,,
 (184) 

Recall that ai is a vector associated with the direction of the principle stresses.  Equation (184) 
represents a flow rule that embodies the concept of normality, and by using the threshold 
function in this equation an associated flow rule is explicitly adopted.  The gradient defines the 
direction of the increment of the inelastic strain vector and dλ defines the length. 

Making use of the isotropic threshold function from Section II.1, recall that there are four 
functional forms of f and there are four partial derivatives of the function.  Explicit formulations 
of these partial derivatives are given in equations (70), (71), (72), and (73).  So the derivatives in 
equation (184) have been defined earlier.  However, the scalar multiplier dλ needs defined and 
this is accomplished by developing an evolutionary law for the inelastic state variable.  The 
evolutionary law is combined with the consistency condition to produce a mathematical 
expression 

 dK
K

f
d

f
df ij

ij 






 


 (185) 

Note that the differential change in the unit vector, dai, is zero.  Substituting equation (183) into 
equation (184) and solving for dλ yields 

ߣ݀  ൌ 	െ ൤డ௙
డ௄

డ௙

డఙ೔ೕ
௜௝൨ܨ

ିଵ
డ௙

డఙೖ೘
  (186)	௞௠ߪ݀

Substitution of equation (186) into equation (184) yields 

 ݀߳௜௝
ூ ൌ 	െ ൤డ௙

డ௄

డ௙

డఙ೛೜
௣௤൨ܨ

ିଵ

	 డ௙

డఙೖ೘

డ௙

డఙ೔ೕ
  (187)	௞௠ߪ݀	

Now define 

ܩ  ൌ െ ൤డ௙
డ௄

డ௙

డఙ೛೜
௣௤൨ܨ

ିଵ

		 (188) 

then 

 ݀߳௜௝
ூ ൌ ܩ డ௙

డఙೖ೘

డ௙

డఙ೔ೕ
  (189)	௞௠ߪ݀

where 
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ߣ݀  ൌ ܩ డ௙

డఙೖ೘
  (190)	௞௠ߪ݀	

What remains are the details associated with the substitution of the partial derivatives of the 
threshold potential function and the particular form for G. 

We now derive the specifics for the inelasticity model using the isotropic Green and 
Mkrtichian (1977) threshold function.  This form for the threshold functions account for material 
behavior where tensile stress states produced a different response than compressive stress states.  
Green and Mkrtichian (1977) divided the threshold surface into four piecewise continuous 
functions  based on principle stresses as follows 

ଵߪ						1#	݊݋ܴ݅݃݁  ൒ ଶߪ ൒ ଷߪ ൒ 0	 (191) 

ଵߪ								2#	݊݋ܴ݅݃݁  ൒ ଶߪ ൒ 0 ൒   (192)	ଷߪ

ଵߪ								3#	݊݋ܴ݅݃݁  ൒ 0 ൒ ଶߪ ൒   (193)	ଷߪ

0								4#	݊݋ܴ݅݃݁  ൒ ଵߪ ൒ ଶߪ ൒   (194)	ଷߪ

The subscripts on the functions below denote in which region of the stress space the function is 
valid.  Recall for Region #1 

 ଵ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ଶܫଵܤ െ   (195)	ଶܭ

The threshold function for Region #2 was defined earlier as 

 ଶ݂ ൌ
ଵ

ଶ
ଵܫଶܣ

ଶ ൅ ଶܫଶܤ ൅ ହܫଶܦ െ   (196)	ଶܭ

The threshold function for Region #3 was defined earlier as 

 ଷ݂ ൌ
ଵ

ଶ
ଵܫଷܣ

ଶ ൅ ଶܫଷܤ ൅ ହܫଷܦ െ   (197)	ଶܭ

and the threshold function for Region #4 was defined earlier as 

 ସ݂ ൌ
ଵ

ଶ
ଵܫସܣ

ଶ ൅ ଶܫସܤ െ   (198)	ଶܭ

Previously only virgin threshold potential function were considered where K was taken 
equal to one.  Now K is allowed to vary since it is an inelastic state variable.  The derivative of 
the threshold function in Region #1 with respect to the inelastic state variable is 

 
డ௙భ
డ௄

ൌ െ2ܭ	(199)  
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Since isotropic hardening was assumed then similar derivatives with respect to K for Region #2, 
Region #3, and Region #4 are obtained, i.e., 

 
డ௙మ
డ௄

ൌ െ2ܭ	(200)  

 
డ௙య
డ௄

ൌ െ2ܭ	(201)  

and 

 
డ௙ర
డ௄

ൌ െ2ܭ	(202)  

respectively. 

Substituting the partial derivative of the isotropic formulation of f1 with respect to ij, 
(182), and (199) into equation (188) yields the following for Region #1 

ଵܩ  ൌ ሾ2ܨܭሺܣଵܫଵ
ଶ ൅   (203)	ଶሻሿିଵܫଵܤ2

Substituting the partial derivative of the isotropic formulation of f2 with respect to ij, (182), and 
(200) into equation (188) yields the following for Region #2 

ଶܩ  ൌ ሾ2ܨܭሺܣଶܫଵ
ଶ ൅ ଶܫଶܤ2 ൅   (204)	ହሻሽିଵܫଶܦ2

Substituting the partial derivative of the isotropic formulation of f3 with respect to ij, (182), and 
(201) into equation (188) yields the following for Region #3 

ଷܩ  ൌ ሾ2ܨܭሺܣଷܫଵ
ଶ ൅ ଶܫଷܤ2 ൅   (205)	ହሻሿିଵܫଷܦ2

Substituting the partial derivative of the isotropic formulation of f4 with respect to ij, (182), and 
(202) into equation (188) yields the following for Region #4 

ସܩ  ൌ ሾ2ܨܭሺܣସܫଵ
ଶ ൅   (206)	ଶሻሿିଵܫସܤ2

The partial derivative of the isotropic formulation of the threshold function f1 with respect 
to ij and equation (203) are now substituted into (189) which yields 

      1 1 11
1 1 1 1 22

1 1 1 2

2

2 2
ij ijI

ij

A I B
d A I dI B dI

KF A I B I

 



   

 (207) 

Substituting the partial derivative of the isotropic formulation of the threshold function f2 with 
respect to ij and equation (204) into equation (189) yields 
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 

       2 1 2 22
2 1 1 2 2 2 52

1 1 1 2 2 5

2

2 2 2

ij ij m i jm j n niI
ij

A I B D a a a a
d A I dI B dI D dI

KF A I B I D I

   


  
     

(208) 

Substituting The partial derivative of the isotropic formulation of the threshold function f3 with 
respect to ij and equation (205) into equation (189) yields 

 
 

       3 1 3 33
3 1 1 3 2 3 52

3 1 3 2 3 5

2

2 2 2

ij ij m i jm j n niI
ij

A I B D a a a a
d A I dI B dI D dI

KF A I B I D I

   


  
     

 (209) 

Substituting The partial derivative of the isotropic formulation of the threshold function f4 with 
respect to ij and equation (206) into equation (189) yields 

      4 1 44
4 1 1 4 22

4 1 4 2

2

2 2
ij ijI

ij

A I B
d A I dI B dI

KF A I B I

 



   

 (210) 

Equations (207) through (210) comprise the inelastic flow law for each Region of the stress 
space. 

II.7 The Scalar Function F(K) for Isotropy 

For Region #1substituting the incremental strain tensor defined in equation (207) into the 
evolutionary law given by equation (183) leads to 

ܭ݀ܭ2  ൌ ଵܫଵ݀ܫଵܣ ൅    (211)	ଶܫଵ݀ܤ

Substituting equation (208) into equation (183) for Region #2 yields 

ܭ݀ܭ2  ൌ ଵܫଵ݀ܫଶܣ ൅ ଶܫଶ݀ܤ ൅    (212)	ହܫଶ݀ܦ

Substituting equation (209) into equation (183) for Region #3 yields 

ܭ݀ܭ2  ൌ ଵܫଵ݀ܫଷܣ ൅ ଶܫଷ݀ܤ ൅   (213)	ହܫଷ݀ܦ

Substituting equation (210) into equation (183) for Region #4 yields 

ܭ݀ܭ2  ൌ ଵܫଵ݀ܫସܣ ൅   (214)	ଶܫସ݀ܤ

Even though the assumption is made that  the material hardens isotropically and only one state 
variable is required, there are four incremental evolutionary equations governing the behavior of 
the inelastic state variable K . 

Now consider uniaxial tensile stress state where 
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௜௝ߪ  ൌ ൥
௧ߪ 0 0
0 0 0
0 0 0

൩	 (215) 

The invariants for this stress state are 

ଵܫ  ൌ   (216)	௧ߪ

and 

ଶܫ  ൌ   (217)	௧ଶߪ

The strain increment for this inelastic stress state is 

 
   

1 1 1
11 2

111 1 1 2

1

2 2
I

kl
klt

f f
d d

K F A I B I
 

 
   

   
   

  (218) 

Where the scalar function F is denoted as tF for this uniaxial load application.  Solving this 
expression for tF yields 

  
1 1

2
11 111 1 1 2

1

2 2
kl

t
kl

df f
F

dK A I B I


  

   
   

   
 (219) 

Since σ11 is the only non-zero component of the stress tensor, then 

  
1 1 11

2
11 11 111 1 1 2

1

2 2
t

f f d
F

dK A I B I


  
   

   
   

 (220) 

Substitution of the invariants I1 and I2 from above leads to 

 
 1 1 11

11

2

2t

A B d
F

K d





  (221) 

In this expression the total derivative of σ11 with respect to d11 can be interpreted as the current 
tangent of the uniaxial stress-strain curve. This is not exact since the current slope is a derivative 
with respect to the total strain, but as the discussion below points out the approximation 
generates little error. 

This slope of the current stress (σij) - total strain (ij)
 tot curve can be approximated using 

the method developed by Ramberg–Osgood model where 
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E
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

 


 

      
  

 
   

 

 

 (222) 

Then the slope of the stress-strain curve can be calculated  by taking the differential of both sides 
of equation (222), i.e., 

 

 

 

 

2

1
2

1
2

1

1

1

ntot

n

n

d d C d
E

d nC d
E

nC d
E

  
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 





   
 
   
 
       

 (223) 

Thus 

 
   1

2

1

1tot n

d

d E n C


  




 (224) 

Typically the reciprocal of Young’s modulus is small when compared to the rest of the 
denominator except for low values of stress where there is little  inelastic strain and the response 
of the material is elastic. Thus for higher values of stress that are beyond the initial threshold 
values, the increment in strain is predominantly inelastic, and the increment in inelastic strain is 
given by 

  1
2

nId n C d    (225) 

Note that beyond the uniaxial threshold stress value any change in the total strain is due 
primarily to changes in the inelastic strain and 

  tot I

d d

d d

 
 

  (226) 

Figure 10 shows the above approximations and how closely the approximations match the data. 
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Figure 10 Computed Compressive Stress-Strain Curve for H-451 Graphite with Data 

Next consider uniaxial compression stress where 

௜௝ߪ  ൌ ൥
௖ߪ 0 0
0 0 0
0 0 0

൩	 (227)  

The invariants for this stress state are 

ଵܫ  ൌ   (228)	௖ߪ

and 

ଶܫ  ൌ   (229)	௖ଶߪ

Denoting the scalar function F as cF then  

 
   

4 4 4
11 2

114 1 4 2

1

2 2
I

km
kmc

f f
d d

K F A I B I
 

 
   

   
   

  (230) 

Solving for F 
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  
4 4

2
11 114 1 4 2

1

2 2
km

c
km

df f
F

dK A I B I


  

   
   

   
 (231) 

Since σ11 is the only non-zero component of the stress tensor, then 

  
4 4 11

2
11 11 114 1 4 2

1

2 2
c

f f d
F

dK A I B I


  
   

   
   

 (232) 

which simplifies to 

 
 4 4 11

11

2

2c

A B d
F

K d





  (233) 

This last equation is different than the corresponding equation for tension again accounting for 
different properties between tension and compression. 

 

 



41 
 

 

  

234 

235 

236 



42 
 

 

  

237 

238 

239 



43 
 

 

 

240 

241 



44 
 

II.8  Anisotropic Formulation 

Once again the flow law is derived from the threshold potential function by way of the 
derivative following of the threshold function 

 ݀߳௜௝
ூ ൌ ߣ݀ డ௙

డఙ೔ೕ
	 (242) 

where dλ is the scalar quantity that defines the length of the gradient vector.  For anisotropy 
Equation (242) represents a flow rule that embodies the concept of normality, and by using the 
threshold function in this equation an associated flow rule is explicitly adopted.  The gradient 
defines the normal to the threshold surface and this normal defines the direction of the increment 
of the inelastic strain vector. 

 ݂ ൌ ݂ሺߪ௜௝, ܽ௜ ௝ܽ, ݀௜ ௝݀,   (243)	ሻܭ

Recall the ai is a vector associated with the direction of the principle stresses and the di vector is 
associated with the preferred material direction for transverse isotropy. 

The gradients to the threshold surface are given in equations (151), (152), (153), and 
(154).  These functions account for the different material behavior in tension and compression as 
well as the directional properties of certain types of graphite.  The threshold surface is once again 
divided into four piecewise continuous functions based on principle stresses as follows. 

Region#1 σ1  ≥  σ2 ≥  σ3  ≥  0 (244) 

Region#2 σ1  ≥  σ2  ≥  0 ≥  σ3 (245) 

Region#3 σ1  ≥  0  ≥  σ2  ≥  σ3 (246) 

Region#4 0  ≥  σ1  ≥  σ2  ≥  σ3 (247) 

The subscript on the function denotes which region of the stress space the function is valid.  Thus 
for Region #1 

 ଵ݂ ൌ
ଵ

ଶ
ଵܫଵܣ

ଶ ൅ ଶܫଵܤ ൅ ଺ܫଵܫଵܧ ൅ ଻ܫଵܨ െ   (248)	ଶܭ

The threshold function defined for Region #2 is 

 ଶ݂ ൌ
ଵ

ଶ
ଵܫଶܣ

ଶܤଶܫଶ ൅ ହܫଶܦ ൅ ଺ܫଵܫଶܧ ൅ ଻ܫଶܨ ൅ ଽܫଶܪ െ   (249)	ଶܭ

The threshold function defined for Region #3 is 

 ଷ݂ ൌ
ଵ

ଶ
ଵܫଷܣ

ଶ ൅ ଶܫଷܤ ൅ ହܫଷܦ ൅ ଺ܫଵܫଷܧ ൅ ଻ܫଷܨ ൅ ଽܫଷܪ െ   (250)	ଶܭ
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and the threshold function defined for Region #4 is 

 ସ݂ ൌ
ଵ

ଶ
ଵܫସܣ

ଶ ൅ ଶܫସܤ ൅ ଺ܫଵܫସܧ ൅ ଻ܫସܨ െ   (251)	ଶܭ

The inelastic state variable K is allowed to vary.  Thus the derivative of the threshold function in 
Region #1 with respect to the inelastic state variable is 

 
డ௙భ
డ௄

ൌ െ2ܭ	(252)  

Since isotropic hardening was assumed then similar derivatives with respect to K for Region #2, 
Region #3 and Region #4 are obtained, i.e., 

 
డ௙మ
డ௄

ൌ െ2ܭ	(253)  

 
డ௙య
డ௄

ൌ െ2ܭ	(254)  

and  

 
డ௙ర
డ௄

ൌ െ2ܭ	(255)  

respectively 

Substituting equations (124), (182), and (252) into equation (188) yields the following for 
Region #1 

ଵܩ  ൌ ሾ2ܨܭሺܣଵܫଵ
ଶ ൅ ଶܫଵܤ2 ൅ ଺ܫଵܫଵܧ2 ൅   (256)	଻ሻሿିଵܫଵܨ2

Substituting equations (125), (182), and (253), and into equation (188) yields the following for 
Region #2 

ଶܩ  ൌ ሾ2ܨܭሺܣଶܫଵ
ଶ ൅ ଶܫଶܤ2 ൅ ହܫଶܦ2 ൅ ଺ܫଵܫଶܧ2 ൅ ଻ܫଶܨ2 ൅   (257)	ଽሻሿିଵܫଶܪ2

Substituting equations (126), (182), and (254) into equation (188) yields the following for 
Region #3 

ଷܩ  ൌ ሾ2ܨܭሺܣଷܫଵ
ଶ ൅ ଶܫଷܤ2 ൅ ହܫଷܦ2 ൅ ଺ܫଵܫଷܧ2 ൅ ଻ܫଷܨ2 ൅   (258)	ଽሻሿିଵܫଷܪ2

Substituting equations (127), (182), and (255) into equation (188) yields the following for 
Region #4 

ସܩ  ൌ ሾ2ܨܭሺܣସܫଵ
ଶ ൅ ଶܫସܤ2 ൅ ଺ܫଵܫସܧ2 ൅   (259)	଻ሻሿିଵܫସܨ2

The expressions for the scalar function F has yet to be determined. 
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Now we concentrate on the components of the incremental strain relationship from 
equation (189). Equations (124) and (256) are substituted into (189) such that 

 

   
    

     

1 1 1 6 1 1 1 11
1 1 1 6 12

1 1 1 2 1 1 6 1 7

1 2 1 1 6 1 7

2

2 2 2 2

ij ij i j p j ip j q qiI
ij

A I E I B E I d d F d d d d
d A I E I dI

KF A I B I E I I F I

B dI E I dI F dI

   


    
   

   

 (260) 

Substituting equations (125) and (257) into equation (189) yields 

 

   

   
    
         

2
2 1 2 62

2 1 2 2 2 5 2 1 6 2 7 2 9

2 2 2 1 2

2 2 1 2 6 1

2 2 2 5 2 1 6 2 7 2 9

1

2 2 2 2 2 2

2

I
ij ij

ij m i jm j n ni i j k j ik j n ni

p q q i jp i q q r rj

d A I E I
KF A I B I D I E I I F I H I

B D a a a a E I d d F d d d d

H a a d d a a d d A I E I dI

B dI D dI E I dI F dI H dI

 

    

 

     

     

  
     

 (261) 

Substituting equations (126) and (258) into equation (189) yields 

 

   

   
     
         

3
3 1 3 62

3 1 3 2 3 5 3 1 6 3 7 3 9

3 3 3 1 3

3 3 1 3 6 1

3 2 3 5 3 1 6 3 7 3 9

1

2 2 2 2 2 2

2

I
ij ij

ij m i jm j n ni i j k j ik j n ni

p q q i jp i q q r rj

d A I E I
KF A I B I D I E I I F I H I

B D a a a a E I d d F d d d d

H a a d d a a d d A I E I dI

B dI D dI E I dI F dI H dI

 

    

 

     

     

  
     

 (262) 

Substituting equations (127) and (259) into equation (189) yields 

 

   
    

     

4 1 4 6 4 4 1 44
4 1 4 6 12

4 1 4 2 4 1 6 4 7

4 2 4 1 6 4 7

2

2 2 2 2

ij ij i j p j ip j q qiI
ij

A I E I B E I d d F d d d d
d A I E I dI

KF A I B I E I I F I

B dI E I dI F dI

   


    
   

   

 (263) 

Equations (260) through (263) comprise the inelastic flow law for each Region of the stress 
space. 

II.9 The Scalar Function F(K) for Anisotropy 

Modeling inelastic stress-strain behavior by substituting the incremental strain equation 
(260) into the evolutionary law equation (183) for Region #1 leads to the following expression 
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ܭ݀ܭ2   ൌ ሺܣଵܫଵ ൅ ଵܫ଺ሻ݀ܫଵܧ ൅ ଶܫଵ݀ܤ ൅ ଺ܫଵ݀ܫଵܧ ൅   (264)	଻ܫଵ݀ܨ

Substituting equation (261) into the evolutionary law equation (183) for Region #2 yields 

ܭ݀ܭ2  ൌ ሺܣଶܫଵ ൅ ଵܫ଺ሻ݀ܫଶܧ ൅ ଶܫଶ݀ܤ ൅ ହܫଶ݀ܦ ൅ ଺ܫଵ݀ܫଶܧ ൅ ଻ܫଶ݀ܨ ൅   (265)	ଽܫଶ݀ܪ

Substituting equation (262) into the evolutionary law equation (183) for Region #3 yields 

ܭ݀ܭ2  ൌ ሺܣଷܫଵ ൅ ଵܫ଺ሻ݀ܫଷܧ ൅ ଶܫଷ݀ܤ ൅ ହܫଷ݀ܦ ൅ ଺ܫଵ݀ܫଷܧ ൅ ଻ܫଷ݀ܨ ൅   (266)	ଽܫଷ݀ܪ

Substituting equation (263) into the evolutionary law equation (183) for Region #4 yields 

ܭ݀ܭ2  ൌ ሺܣସܫଵ ൅ ଵܫ଺ሻ݀ܫସܧ ൅ ଶܫସ݀ܤ ൅ ଺ܫଵ݀ܫସܧ ൅   (267)	଻ܫସ݀ܨ

As was the case for isotropic graphite, for anisotropic graphite there are four separate 
incremental formulations for the isotropic state variable K. 

Next consider a uniaxial tensile stress where 

௜௝ߪ  ൌ ൥
௧ߪ 0 0
0 0 0
0 0 0

൩	 (268) 

The invariants for this stress state are 

ଵܫ  ൌ   (269)	௧ߪ

ଶܫ  ൌ   (270)	௧ଶߪ

଺ܫ  ൌ ݀ଵ݀ଵߪ௧	 (271) 

and 

଻ܫ  ൌ ݀ଵ݀ଵߪ௧ଶ	 (272) 

The inelastic strain increment for this state of stress is 

 
  

1 1 1
11 2

111 1 1 2 1 1 6 1 7

1

2 2 2 2
I

kl
kl

f f
d d

K F A I B I E I I F I
 

 
   

   
     

  (273) 

Solving for F yields 

  
1 1

2
11 111 1 1 2 1 1 6 1 7

1

2 2 2 2
kl
I

kl

df f
F

dK A I B I E I I F I


  

   
   

     
 (274) 
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Since σ11 is the only non-zero component of the stress tensor, then 

  
1 1 11

2
11 11 111 1 1 2 1 1 6 1 7

1

2 2 2 2 I

f f d
F

dK A I B I E I I F I


  
   

   
     

 (275) 

Simplifying 

   11
1 1 1 1 1 1 1 1

11

1
2 2 2

2 I

d
F A B E d d Fd d

K d




     (276) 

Note that the term dσkl is the slope of the stress strain curve beyond yielding for the associated 
direction vector di.  The derivative of stress with respect to inelastic strain is approximated using 
by the Ramberg-Osgood uniaxial stress-strain law. 
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III.  Reliability Model 

The purpose of this segment of the project was establishing a single form invariant 
probabilistic based failure model for components fabricated from graphite.  The probabilistic 
failure model must reflect the material behavior of graphite.  Through the application of invariant 
theory and the Cayley-Hamilton theorem as outlined in Spencer (1984), an integrity basis with a 
finite number of stress invariants will be formulated that reflects the material behavior of 
graphite.  The integrity basis, when posed properly, spans the functional space for the failure 
model.  A model based on a linear combination of stress invariants will capture the material 
behavior in a mathematically convenient manner.  This effort begins by proposing a 
deterministic failure criterion that reflects relevant material behavior.  When the model 
parameters are treated as random variables, a deterministic model can be transformed into a 
probabilistic failure model.  Monte Carlo simulation with importance sampling will be used to 
compute component failure probabilities.  The three classical models will be compared with the 
experiment results obtained from Burchell (2007). 

III.1 Graphite Failure Data 

In the following section several common failure criterion models will be introduced and 
the constants for the models are characterized using biaxial failure data generated by Burchell 
(2007).  For the simpler models Burchell’s (2007) data has more information than is necessary.  
For some models all the constants cannot be approximated because there is not enough 
appropriate data for that particular model.  These issues are identified for each failure model.  
Burchell’s specimens were fabricated from grade H-451 graphite.  There were nine load cases 
presented, including two uniaxial tensile load paths along two different material directions (data 
suggests that the material is anisotropic), one uniaxial compression load path, and six biaxial 
stress load paths.  The test data is summarized in Table 1.  The mean values of the normal stress 
components for each load path from Burchell’s (2007) data are presented in Table 2.  In addition, 
corresponding invariants are calculated and presented in Table 2 along with Lode’s angle.  All 
the load paths are identified in Figure 11. 

 

 

  



54 
 

Table 1 Grade H-451 Graphite: Load Paths and Corresponding Failure Data 

Data Set 
Ratio 
 

Failure Stresses 
(MPa） 



# B-1 1 : 0 

10.97 0 

9.90 0 

9.08 0 

9.22 0 

12.19 0 

11.51 0 

# B-2 0 : 1 

0 15.87 

0 12.83 

0 18.06 

0 20.29 

0 14.32 

0 14.22 

# B-3 0 : - 1 

0 -47.55 

0 -50.63 

0 -59.72 

0 -56.22 

0 -48.19 

0 -51.54 

# B-4 1 : - 1 

9.01 -8.94 

7.68 -7.68 

14.34 -14.16 

8.93 -8.78 

13.23 -13.14 

9.21 -9.11 

Data Set 
Ratio 


Failure Stresses 
(MPa） 

 

# B-5 2 : 1 

7.81 3.57 

8.54 3.89 

11.2 5.6 

13.00 6.42 

11.54 5.76 

12.12 6.03 

# B-6 1 : 2 

6.36 12.67 

6.42 12.86 

6.74 13.42 

7.69 15.36 

6.46 12.95 

7.17 14.36 

# B-7 1 : - 2 

7.98 -15.99 

5.50 -10.96 

6.69 -13.37 

10.49 -21.01 

9.18 -18.30 

11.31 -22.61 

 

 

 

 

 

Data Set 
Ratio 


Failure Stresses 
(MPa） 

 

# B-8 1 : 1.5 

6.69 10.03 

6.51 9.78 

8.07 12.11 

9.13 13.74 

6.11 9.19 

9.24 13.91 

9.93 14.93 

8.93 13.41 

7.20 10.79 

# B-9 1 : - 5 

6.35 -31.61 

8.69 -43.44 

7.40 -36.86 

7.09 -35.30 

5.94 -29.50 

6.83 -32.83 

8.06 -40.21 

7.75 -38.58 
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Figure 11 Burchell’s (2007) Load Paths Plotted in a 1 – 2 Stress Space 

 

Table 2 Invariants of the Average Failure Strengths for All 9 Load Paths 

Data Set (1)ave (MPa) (2)ave (MPa) (MPa) r (MPa)  

# B-1 10.48 0 6.05 8.56 0.00o 

# B-2 0 15.93 9.20 13.01 0.00 o 

# B-3 0 -52.93 -30.56 43.22 60.00 o 

# B-4 10.4 -10.3 0.06 14.64 29.84 o 

# B-5 10.7 5.21 9.19 7.57 29.13 o 

# B-6 6.81 13.6 11.78 9.62 30.05o 

# B-7 8.53 -17.04 -4.91 18.41 40.88 o 

# B-8 7.98 11.99 11.53 8.63 40.82 o 

# B-9 7.26 -36.04 -16.62 32.79 50.99 o 

 

)(2 MPa

)(1 MPa

#B-3 

#B-9 

#B-7 

#B-4 

#B-5 

#B-8 
#B-6 

#B-1 

#B-2 
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III.2  Isotropic Formulation for Failure Function 

The next phenomenological failure criterion considered in this effort was proposed by 
Green and Mkrtichian (1977) and has the basic form 

  ,ij ig g a  (285) 

Green and Mkrtichian (1977) track the principle stress direction vectors, identified here as ai.  
Utilizing the eigenvectors of the principal stresses enables the identification of tensile and 
compressive principle stress directions.  The authors of this model consider different behavior in 
tension and compression as a type of material anisotropy.  Utilizing first order tensors (the 
eigenvectors) as directional tensors is an accepted approach in modeling anisotropy through the 
use of invariants.  Spencer (1984) pointed out the mathematics that underlie the concept.   

The integrity basis for the function with a dependence specified in equation (285) is 

  (286) 

 jiijI 2  (287) 

 kijkijI 3  (288) 

 ijji aaI 4  (289) 

and 

 kijkji aaI 5  (290) 

These invariants (with the exception of I3, which can be derived from I1 and I2) constitute an 
integrity basis and span the space of possible stress invariants that can be utilized to compose 
scalar valued functions that are dependent on stress.  Thus the dependence of the Green and 
Mkrtichian (1977) failure criterion can be characterized in general as  

    1 2 4 5, , ,ijg g I I I I   (291) 

One possible polynomial formulation for g in terms of the integrity basis is 

    2

1 2 1 4 5 1ijg A I B I C I I D I       (292) 

This functional form is quadratic in stress which, as is seen in the next section, is convenient 
when extending this formulation to include anisotropy.  The invariants I4 and I5 are associated 
with the directional vector ai, and we note that Green and Mkrtichian (1977) utilized these 
invariants in the functional dependence very judiciously.  They partitioned the Haigh-
Westergaard stress space and offered four forms for the failure functions.  

 

III.2.1 Piecewise Continuous Failure Function – Isotropic Formulation  

By definition the principal stresses are identified such that  

 321    (293) 

iiI 1
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The four functions proposed by Green and Mkrtichian (1977) span the stress space which is 
partitioned as follows: 

Region #1: 0321     – all principal stresses are tensile 

Region #2: 321 0     – one principal stress is compressive, the others 

are tensile 

Region #3: 321 0       – one principal stress is tensile, the others are 

compressive 

Region #4: 3210     – all principal stresses are compressive. 

Thus the Green and Mkrtichian (1977) criterion has a specific formulation for the case of all 
tensile principle stresses, and a different formulation for all compressive principle stresses (see 
derivation below).  For these two formulations there is no need to track principle stress 
orientations and thus for Regions #1 and #4 the Green and Mkrtichian (1977) failure criterion did 
not include the terms associated with I4 and I5, both of which contain information regarding the 
directional tensor.  A third and fourth formulation exists for Regions #3 and #4 where two 
principle stresses are tensile and when two principle stresses are compressive, respectively and 
the failure behavior depends on the direction of the principal tensile and compressive stresses.  
For these regions of the stress space for the Green and Mkrtichian (1977) failure criterion 
includes the invariants I4 and I5. 

 The functional values of the four formulations g1, g2, g3 and g4 must match along their 
common boundaries.  In addition, the tangents associated with the failure surfaces along the 
common boundaries must be single valued.  This will provide a smooth transition from one 
region to the next.  To insure this, the gradients to the failure surfaces along each boundary are 
equated.  The specifics of equating the formulations and equating the gradients at common 
boundaries are presented below.  Relationships are developed for the constants associated with 
each term of the failure function for the four different regions.  

Region #1:  0321    Green and Mkrtichian (1977) assumed the failure 

function for this Region of the stress space is 

 2
1 1 1 1 2

1
1

2
g A I B I    

 
 (294) 

From equation (294) it is evident that there will be a group of constants for each region of the 
stress space.  Hence the subscripts for the constants associated with each invariant as well as the 
failure function will run from one to four.  Also note the absence of invariants I4 and I5.  The 
corresponding gradient to the failure surface is  

 1 1 1 1 2

1 2ij ij ij

g g I g I

I I  
    

 
    

 (295) 

where 

 1
1 1

1

g
A I

I





 (296) 
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 1
1

2

g
B

I





 (297) 

 ij
ij

I 




 1  (298) 

and 

 ij
ij

I 


22 

  (299) 

Here ij is the Kronecker delta tensor.  Substitution of equations (296) through (299) into (295) 
leads to the following tensor expression 

 1
1 1 12ij ij

ij

g
A I B 




 


 (300) 

or in a matrix format 

   (301) 

The matrix formulation allows easy identification of relationships between the various constants. 

Region #2:  321 0    The failure function for Region #2 is 

 2
2 2 1 2 2 2 1 4 2 5

1

2
g A I B I C I I D I     

 
  (302) 

Note the subscripts on the constants and the failure function.  The gradient to the surface is  

 52 2 1 2 2 2 4 2

1 2 4 5ij ij ij ij ij

Ig g I g I g I g

I I I I    
       

   
        

 (303) 

Here 
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1

g
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I
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
 (304) 

 2
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 2
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4

g
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
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2
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1

3

2

1

1

321

321

321

1

200

020

002

00

00

00

BA
f

ij 




















































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 ji
ij

aa
I






4  (308) 

and 

 kikjjkik
ij

aaaa
I






 5  (309) 

The principle stress direction of interest in this region of the stress space is the one associated 
with the third principal stress.  Assuming the Cartesian coordinate system is aligned with the 
principal stress directions then the eigenvector associated with the third principal stress is  

 )1,0,0(ia  (310) 

Thus for equation (307) and (308) 
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
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0
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jikjik aaaaaa

 (311) 

Given the principle stress direction the fourth and fifth invariants are 

 34 I  (312) 

and 

 2
35 I  (313) 

for this region of the stress space.  Substitution of equations (304) through (308) into (303) yields 
the following tensor expression for the normal to the failure surface 

 
2

2 1 2 2 3 1

2

2 ( )

( )

ij ij ij i i
ij

k i jk j k ki

g
A I B C I a a

D a a a a

   


 


   



 
 (314) 

The matrix form of equation (314) is 

1 2 3 1

2
1 2 3 2 2 2

1 2 3 3

3

3 2 2

1 2 3 3

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 0 2 0 0 2

ij

g
A B

C D

   
   


   




   

    
          

       
   
       
       

 (315) 
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Region #3:  321 0    The failure function for this region of the stress 

space is 

 2
3 3 1 3 2 3 1 4 3 5

1

2
g A I B I C I I D I

     
 

  (316) 

The normal to the surface is  

 3 3 3 3 3 51 2 4

1 2 4 5ij ij ij ij ij

g g g g g II I I

I I I I    
       

   
        

 (317) 

Here 

 3
3 1 3 4

1

g
A I C I

I


 


 (318) 

 3
3

2

g
B

I


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
 (319) 

 3
3 1

4

g
C I

I





 (320) 

and 

 3
3

5

g
D

I





 (321) 

The principle stress direction of interest for this stress state is the one associated with the first 
principal stress, i.e.,  

 )0,0,1(ia  (322) 

Now 
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 (323) 

The fourth and fifth invariants for this Region of the stress space are 

 14 I  (324) 

and 

 2
15 I  (325) 

Substitution of the quantities specified above into (317) yields the following tensor expression 
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3
3 1 3 3 1 1

3

2 ( )

( )

ij ij ij i j
ij

k i jk j k ki
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A I B C I a a

D a a a a

   


 


   



 
 (326) 

The matrix form of this equation is as follows 

1 2 3 1

3
1 2 3 3 2 3

1 2 3 3

1 2 3 1

1 3 3

1

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

2 0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

ij

g
A B

C D

   
   


   

   




    
          

       
    

       
      

  (327) 

Region #4: ( 3210   ) The failure function for this region of the 

stress space is 

 2
4 4 1 4 2

1
1

2
g A I B I    

 
 (328) 

The corresponding normal to the failure surface is  

 4 4 1 4 2

1 2ij ij ij

g g I g I

I I  
    

 
    

 (329) 

Here 

 4
4 1

1

g
A I

I





 (330) 

and 

 4
4

2

g
B

I





 (331) 

Substitution of the equations above into (329) yields the following tensor expression 

 4
4 1 42ij ij

ij

g
A I B 




 


 (332) 

The matrix format of this expression is 

 
1 2 3 1

4
1 2 3 4 2 4

1 2 3 3

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2ij

g
A B

   
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
   

    
          

       

 (333) 

With the failure functions and the gradients to those functions defined for each region, 
attention is now turned to defining the constants.  Consider the region of the Haigh-Westergaard 
stress space where with andThe stress state in a matrix format is



62 

 


















000

00

00

2

1




 ij
 (334) 

and this stress state lies along the boundary shared by Region #1 and Region #2.  At this 
boundary we impose 

 1 2g g  (335) 

and 

 1 2

ij ij

g g

 
 


 

 (336) 

For this stress state the invariants I1 and I2 are  

 211  I  (337) 

and 

 2
2

2
12  I  (338) 

for both g1 and g2.  The invariants I4 and I5 for g2 are 

 034  I  (339) 

and 

   02
35  I  (340) 

Substitution of equations (337) through (340) into equation (336) yields the following matrix 
expression  
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 (341) 

The following three expressions can be extracted from equation (341) 

     2122111121 2)(2)( BABA    (342) 

     2222112121 2)(2)( BABA    (343) 

 221221121 )()()( CAA    (344) 
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The constant D2 does not appear due to its multiplication with the null matrix.  However, C2 does 
appear in the third expression but in the first two immediately above.  Focusing on equation 
(342) and equation (343) which represents two equations in two unknowns then  

 21 BB   (345) 

and 

 21 AA   (346) 

Substitution of equation (346) into equation (344) yields 

 02 C  (347) 

and at this point D2 is indeterminate 

Now consider the Region of the Haigh-Westergaard stress space where and 
 The stress state in a matrix format is
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and this stress state lies at the boundary shared by Region #2 and Region #4.  At this boundary 
we impose 

 2 3g g  (349) 

and 

 32

ij ij
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 
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
 

 (350) 

Under these conditions the invariants I1 and I2 are 

 311  I  (351) 

and 

 2
3

2
12  I  (352) 

Substitution of equation (351) and (352) into equation (350) yields 
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 (353) 

The following three expressions can be extracted from equation (353) 
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 (354) 

     3133123231 )()( CACA    (355) 

and 
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Earlier it was determined that C2 = 0, so from equation (355) we obtain 

 3
31

3
32 )(

CAA





  (357) 

From equation (354) and equation (355) we obtain 

 33
1

31
32 2

)(
DCBB 







 (358) 

In addition, from equation (356) and equation (355) we obtain 

 33
1

31
2 2

)(
DCD 







 (359) 

 Consider the Region of the Haigh-Westergaard stress space where and 
   The stress sate in a matrix format is 



65 

 


















3

2

00

00

000


 ij

 (360) 

and this stress state lies along the boundary shared by Region #3 and Region #4.  At this 
boundary we impose  

 3 4g g  (361) 

and 
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Under these conditions the invariants I1 and I2 are  

 321  I  (363) 

and 
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3

2
22  I  (364) 

Substitution of equations (367) and (368) into equation (366) yields 
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 (365) 

The following three expressions can be extracted from equation (365) 

   432332332 )()( ACA    (366) 

     4243232332 2)(2)( BABA    (367) 

and 

     4343233332 2)(2)( BABA    (368) 

From equation (366) we discern that 

 433 ACA   (369) 

From equation (367) and equation (368) we obtain 
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     432332 2222 BB    (370) 

or that 

 43 BB   (371) 

Substitution of equations (369) and (370) into equation (367) leads to 

 43 AA   (372) 

and 

 03 C  (373) 

Substitution of equation (373) into equations (355), (356) and (357) yields  

 32 AA   (374) 

 332 DBB   (375) 

and 

 32 DD   (376) 

So the relationships between the functional constants are as follows 

 4321 AAAA   (377) 

 242321 DBDBBB   (378) 

 032  CC  (379) 

and 

 032  DD  (380) 

These relationships insure that the four functional forms for the failure function are smooth and 
continuous along the boundaries of the four regions. 

 

III.2.2 Definition of Failure Function Constants – Isotropic Failure 

Next we utilize specific load paths in order to define the constants defined above in terms 
of stress values obtained at failure.  Consider the following stress state at failure under a uniaxial 
tensile load 
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This stress state lies on the boundary of Region #1.  The invariants for this stress state are 

 TI 1  (382) 

and 

 2
2 TI   (383) 

The failure function takes the form 
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 (384) 

from which the following relationship is obtained 
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Next a uniaxial compressive stress state is considered where 

 

 




















C00

000

000


 ij  (386) 

 

 

 

 

 

The principle stress direction for this stress state is  

 )1,0,0(ia  (387) 

thus 
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The invariants are as follows 

 CI 1  (389) 

  22 CI   (390) 

 CI 4  (391) 
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and 

  2
5 CI   (392) 

Thus 
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 (393) 

which leads to 
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Next consider an equal biaxial compressive stress state where 
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This stress state lies within Region #4 and the invariants are as follows 

 BCI 21   (396) 

and 

 2
2 2 BCI   (397) 

The failure function for this particular stress state is 
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which leads to 
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Solving equations (385), (394) and (399) using equations (377) through (380) leads to 
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224321

21

CBC

AAAA


  (400) 

 
22221

1

2

11

CBCT

BB


  (401) 

 
2243

2

12

BCC

BB


  (402) 

and  

 
2232

11

TC

DD


  (403) 

In order to visualize the isotropic version of the Green and Mkrtichian (1977) failure 
criterion relative to Burchell’s (2007) failure data, values were computed for the strength 
constants immediately above, i.e., T = 15.93 MPa for tension, C = 52.93 MPa for compression 
and BC = 61.40 MPa for the biaxial compression.  The values for T and C and were obtained 
directly from Burchell’s (2007) data.  The value for BC was determined by a best fit 
approximation of the failure curve to the data in Figure 12.  Various projections of the isotropic 
Green and Mkrtichian (1977) failure criterion are presented in the next several figures along with 
the Burchell (2007) data.  The first is a projection onto the 1 – 2 stress space which is depicted 
in Figure 12.  As can be seen in this figure the isotropic Green and Mkrtichian (1977) model 
captures the different behavior in tension and compression exhibited by the Burchell (2007) data 
along the 2 axis.  However, the Green and Mkrtichian (1977) failure criterion does not capture 
material anisotropy which is clearly exhibited by the Burchell (2007) failure data along the 
tensile segments of the 1 axis relative to the 2 axis.   
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Figure 12  The Green-Mkrtichian (1977) failure criterion projected onto the 1 -2 principle 
stress plane    (T= 15.93 MPa, C = 52.93 MPa, BC = 61.40 MPa) 

The isotropic Green and Mkrtichian (1977) failure criterion is projected onto the 
deviatoric planes in Figures 13 and 14.  Note that a cross section through the failure function 
perpendicular to the hydrostatic axis transitions from a pyramidal shape (Figure 14) to a circular 
shape (Figure 13) with an increasing value of the stress invariant I1. This suggests that the apex 
of the failure function presented in a full Haigh-Westergaard stress space is blunt, i.e., quite 
rounded for the this particular criterion.   
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Figure 13  The Green-Mkrtichian criterion projected onto a deviatoric plane  MPa20.9  

parallel to the -plane with T = 15.93 MPa, C = 52.93 MPa, BC = 61.40 MPa 

 

 

 

Figure 14  The Green-Mkrtichian criterion projected onto a deviatoric plane  MPa2.30  

parallel to the -plane with T = 15.93 MPa, C = 52.93MPa, BC = 61.40 MPa 

The meridian lines of the isotropic Green-Mkrtichian (1977) failure surface 
corresponding to o0 and o60  are depicted on Figure 15.  Obviously the meridian lines are 
not linear.  The o0 meridian line goes through point defined by 9.02 MPa and  r = 13.01 
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MPa.  The o60 meridian line goes through the point defined by  = 30.56 MPa and r = 43.22 
MPa.     

 

 

 

 

 

 

 

 

 

Figure 2.7.4 The Green-Mkrtichian criterion projected onto the meridian plane for a material 
strength parameter of T = 15.93 MPa, C = -52.93 MPa, BC = -61.40 MPa 

 

 

 

 

Figure 15 Different meridian curves of the isotropic Green-Mkrtichian (1977) criterion  
(T = 15.93 MPa, C = 52.93 MPa, BC = 61.40 MPa) 

 As the value of the I1 stress invariant associated with the hydrostatic stress increases in 
the negative direction, failure surfaces perpendicular to the hydrostatic stress line become 
circular again.  The model suggests that as hydrostatic compression stress increases the 
difference between tensile strength and compressive strength diminishes and approach each other 
asymptotically.  This is a material behavior that should be verified experimentally in a manner 
similar to Bridgman’s (1953) bend bar experiments conducted in hyperbaric chambers on cast 
metal alloys.  Balzer (1998) provides an excellent overview of Bridgman’s experimental efforts, 
as well as others and their accomplishments in the field of high pressure testing.   
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Figure 16  Different deviatoric planes from the isotropic Green-Mkrtichian (1977) failure 
criterion with nine average strength values from Burchell’s (2007) failure data.                        

(T = 15.93 MPa, C = 52.93 MPa, BC = 61.40 MPa, see Table 2). 

 

III.2  Anisotropic Formulation 

As discussed in earlier sections the Burchell (2007) multiaxial failure data strongly 
suggests that the graphite tested was anisotropic.  Thus there is a need to extend the isotropic 
failure model discussed in the previous section so that anisotropic failure behavior is captured.  
This can be done again by utilizing stress based invariants where the material anisotropy is 
captured through the use of a direction vector associated with primary material directions.  The 
concept is identical to the extension of the isotropic inelastic constitutive model presented earlier 
in this report.  The extension of a phenomenological failure criterion will be made for a 
transversely isotropic material.  Other material symmetries, e.g., an orthotropic material 
symmetry, can be included as well.  Duffy and Manderscheid (1990b) as well as others have 
suggested an appropriate integrity basis for the orthotropic material symmetry.  Transversely 
isotropic materials have the same properties in one plane and different properties in a direction 
normal to this plane.  Orthotropic materials have different properties in three mutually 
perpendicular directions. 

The preferred material direction is designated through a second direction vector, di.  The 
dependence of the failure function is extended such that 

   0,, jijiij aaddg   (404) 

The definition of the unit vector ai is the same as in earlier sections.  Rivlin and Smith (1969) as 
well as Spencer (1971) show that for a scalar valued function with dependence stipulated by 
equation (404) the integrity basis is 

)(1 MPa

)(2 MPa plane03 
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ଵܫ  ൌ  ௞௞ (405)ߪ

ଶܫ  ൌ  ௝௜ (406)ߪ௜௝ߪ

ଷܫ  ൌ  ௞௜ (407)ߪ௝௞ߪ௜௝ߪ

ସܫ  ൌ ܽ௜ ௝ܽߪ௝௜ (408) 

ହܫ  ൌ ܽ௜ ௝ܽߪ௝௞ߪ௞௜ (409) 

଺ܫ  ൌ ݀௜ ௝݀ߪ௝௜ (410) 

଻ܫ  ൌ ݀௜ ௝݀ߪ௝௞ߪ௞௜ (411) 

ܫ଼  ൌ ܽ௜ ௝ܽ ௝݀݀௞ߪ௞௜ (412) 

and 

ଽܫ  ൌ ܽ௜ ௝ܽ ௝݀݀௞ߪ௞௠ߪ௠௜ (413) 

The invariant I3 is omitted again since this invariant is cubic in stress.  As before those invariants 
linear in stress enter the functional dependence as squared terms or as products with another 
invariant linear in stress.  Therefore the anisotropic failure function has the following 
dependence 
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
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

(414) 

The form of the failure function was constructed as a polynomial in the invariants listed above.  
The constants in this formulation (A, B, C, D, E, F, G, and H) are characterized by adopting 
simple strength tests.  The proposed failure function was incorporated into a reliability model 
through the use of Monte Carlo simulation and importance sampling techniques.  This feature is 
discussed in a subsequent section. 

Similar to the approach adopted for anisotropic constitutive models, the underlying 
concept is that the response of the material depends on the stress state, a preferred material 
direction and whether the principal stresses are tensile or compressive.  The principle stress 
space is divided again into four regions. The regions and associated failure functions are listed 
below. In the first region where all of the principle stresses are tensile, i.e., 

Region #1:  0321    

 














 7161121

2
111 2

1
1 IFIIEIBIAg  (415) 

In Region #1 a direction vector associated with the principle stresses is unnecessary since all 
principle stresses are tensile. 
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Region #2:   321 0    

     
 

92812

726125241222
2

122 211

IHIIG

IFIIEIDIICIBIAg




 (416) 

In Region #2 the direction vector ai is associated with the compressive principle stress σ3.  Thus 
for this region 

 ܽ௜ 		ൌ 	 ሺ0, 0, 1ሻ (417) 

Region #3:  321 0    

The failure function for this region of the stress space is 

     
 

93813

736135341323
2

133 211

IHIIG

IFIIEIDIICIBIAg




 (418)  

In Region #3 the direction vector ai is associated with the tensile principle stress direction σ1.  
For this region 

 ܽ௜ 		ൌ 	 ሺ1, 0, 0ሻ (419)  

Region #4:  3210     

The failure function for this region of the stress space is 

   7461424
2

144 211 IFIIEIBIAg   (420) 

and since all principle stresses are compressive a direction vector associated with the principle 
stress direction is unnecessary. 

Following derivations outlined earlier the coefficients for the four failure functions (i.e., 
g1. g2. g3. and g4) are defined by the following expressions 

 224321
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BCTC

AAAA


  (421) 
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 (425) 

 222232
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YCYTTCTT

HH


  (426) 

where the strength parameters identified above are defined as 

YT  –  tensile strength in the preferred material direction 

YC  –  compressive strength in the preferred material direction 

TT  –  tensile strength in the plane of isotropy 

TC  –  compressive strength in the plane of isotropy 

BC  –  equal biaxial compressive strength in the plane of isotropy 

MBC  –  equal biaxial compressive strength with only one stress component in the 
plane of isotropy 

The anisotropic Green and Mkrtichian (1977) failure criterion is projection onto the 1 – 
2 stress space in Figure 17.  The strength parameters were for the most part once again extracted 
from Burchell’s (2007) data.  Values for the strength parameters listed above are given in the 
figure caption.  Note the agreement with the data along the two tensile axes, as well as along the 
failure curve for each load path.  Average strength values for each load path are depicted as open 
red circles in the figure. 
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Figure 17  Anisotropic Green-Mkrtichian (1977) failure criterion with Burchell’s (2007) failure 
data projected onto the 11 - 22 principle stress plane (TT = 10.48 MPa, TC = 35MPa,         

BC = 40 MPaYC = 15.93 MPa, YC = 52.93 MPa, MBC = 61.40 MPa) 
 

III.3  Monte Carlo Methods Using Importance Sampling 

 In general the probability of failure of a structural component can be expressed as 

  
f

f YP f y dy
 



   (427) 

Here Y is a random strength variable, fY is a probability density function associated with t he 
random strength variable and δf  is the failure domain that satisfies the expression 

   0g y   (428) 

where g(y) is the functional representation of the failure criterion.  Although the integral seems 
straight forward, closed form solutions are unavailable except for simple failure criterion.  As an 
alternative, conventional Monte Carlo simulation is commonly used to numerically evaluate the 
probability of failure when a closed form solution is difficult to formulate.   

   0,48.10, 21 MPa   MPa93.15,0, 21 
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
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Monte Carlo simulation is relatively easy to implement. An indicator function I is defined 
such that 

 

 
 

1 0

0 0

g y
I

g y




    (429) 

This indicator function can be included in the integral above if the integration range is expanded to 
include the entire design variable space.  Thus 

 

 
s f

fP I f y dy 
 

 
 (430) 

where earlier δs was defined as the safe domain of the design variable space.  The integral on the 
right side of this expression defines the expectation of the indicator function, i.e., 

 

   
s f

E I I f y dy 
 

 
 (431) 

Recall from statistics that the definition of the mean (μ) of a random variable (say X) is the 
expectation of the variable.  Thus 

  x x f x dx




   (432) 

Also recall that the mean associated with a random variable can be estimated from a sample taken 
from the population that is being characterized by the distribution function f(x).  The estimated value 
of the mean is given by the simple expression 

 1

1 N

x j
j

x
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


 
 (433) 

Where xj is the jth observation in a random sample taken from the population.  In a similar fashion 
the probability of failure (Pf) represents the mean (or expected value) of the indicator function.  
Thus equation (430) can be expressed as 
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1
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f j
N j

P I
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 
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 


 (434) 

Here it is implied that a random sample of successes (I = 1) or failures (I = 0) has been generated.  
Thus Ij is the jth evaluation of the limit state function where the random observations have been 
generated from the cumulative distribution function FX. 

 As noted above Monte Carlo simulation is computationally simple.  To increase the 
accuracy of this numerical integration method the number of samples is simply increased.  
However, the method does not converge to correct answers in the low probability of failure regime.  
As engineers we wish to design components with very low probabilities of failure.  Thus 
conventional Monte Carlo simulation is modified using importance sampling to achieve this goal.  
With importance sampling the design space is sampled only within the near vicinity of the most 
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probable point (MPP – see Figure 18).  The name for the technique is derived from the notion that 
more sampling should take place in the most "important" region of the design variable space.  The 
important region of the design variable space corresponds to the MPP.  Thus the method requires a 
general knowledge of the location of the MPP.  However, determining the exact location of the 
MPP is not necessary – just the general vicinity of the MPP.  We note this method alleviates a 
potential non-conservative numerical error associated with the fast probability integration method.  
The limit state function in this work is by no means a linear function in terms of the design random 
variables and when using fast probability integration (FPI) techniques the limit state function is 
approximated by a hyper-plane at the MPP.  As Wetherhold and Ucci (1994) point out that a planar 
approximation can yield non-conservative results depending on the curvature of the limit state 
function at the MPP.  Since importance sampling does not depend on this curvature, it effectively 
avoids this potential non-conservative numerical error. 

 For a low probability of failure the main contribution to Pf  will come from regions near the 
MPP.  This region (see Figure 18) will also correspond to the tail of the joint probability distribution 
function of the design strength random variables.  Harbitz (1986) has shown that restricting the 
sampling domain in the design variable space to the tail of the joint probability distribution function 
produces a remarkable increase in efficiency in comparison to conventional Monte Carlo 
techniques.  

 

Figure 18  The principle of the importance sampling 

In order to develop the details of importance sampling, express equation (430) in the 
following manner 
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Here Y is a vector of random strength parameters.  The function Yk


serves as the probability 

density function for an alternative indicator function defined as 
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Equation (435) can be expressed as a Riemann sum, i.e.,  
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Thus a random number is generated and realizations for each of the random strength variables (Y)j 
are computed using the inverse of YK


, which is the cumulative distribution function corresponding 

to Yk


in the equation above.  Both functions have yet to be defined.  These realizations are then 

used to determine values of Yk


, Yf 
, and the limit state function g(y) (which yields a value of the 

indicator function I). 

Harbitz (1986) demonstrated that the number of simulations necessary to achieve the same 
order of accuracy for the conventional Monte Carlo methods is reduced by a factor of  

 1/{1 - *)2)} (438) 

where Γα is the chi-square distribution with  degrees of freedom, and * is less than or equal to the 
actual the reliability index   for a given problem.  The degrees of freedom correspond to the 
number of design variables included in the limit state function.  In essence, Harbitz (1986) reasoned 
that random design variables are being sampled from a truncated distribution function.  This 
corresponds to sampling from the actual probability distribution function, however the sampling 
domain is restricted to regions outside a sphere defined in the design variable space (see Figure 18).  
The center of the sphere is located at the origin of the transformed design variable space, and the 
radius of the sphere is equal to *.  Proof of Harbitz (1986) argument follows from the 
interpretation of this geometrical concept. 

 In practice Yk


should be selected such that sampling of the random variable takes place in a 

small region surrounding the MPP.  The importance sampling concept is illustrated in Figure 18 
which depicts a two-dimensional transformed design space.  The rational is easily extended to an n-
dimensional random variable space.  As noted above the key is sampling around the MPP.  One 
readily applied procedure is to select Yk


such that the mean ( Y

 ) of this probability density 

function lies near the  MPP.  The FPI method is utilized to obtain approximate Z* ( β) values to 
establish a general location of the MPP.  Keep in mind that for two random variables 

    
1 22 2* *

1 2z z     
 (439) 

Three or more random variables would be a simple extension of this geometric concept.  Here zα is 
the vector of standard normal variables which are related to the design variables in the following 
manner 



81 

 
 









Y

Yy
z


  (440) 

Here y are realizations of the random strength variable Y, and values correspond to graphite 
strength parameters outlined in previous sections of the report.  

With an approximate z
* value the mean associated with the probability density function Yk



is given by the following expression 

    
*

Yk f x f xz


       (441) 

The parameters  xf and  xf are the mean and standard deviation associated with the actual 

probability distribution function that characterizes the random strength variable, i.e., fX.  The 
strength random variables are assumed characterized by a two parameter Weibull distribution.  The 
standard deviation of the probability density function Yk


is chosen in such a way that the sampling 

region is restricted to the near vicinity of the MPP.  Here an approach suggested by Melchers (1989) 
is adopted where 
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Although this procedure does not limit the type of distribution for Yk


 a normal distribution is 

assumed here for simplicity, i.e., 
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This is a standard normal probability density function. 

 Since most structural design analyses will involve more than one random design variable, an 
n-dimensional normal probability density must be utilized.  The sampling function is constructed 
assuming independent random variables, i.e., 

      
1

n

Yk y k y
 



   (446) 

For the isotropic formulation for the Green Mkrtichian (1977) failure function n is three.  For the 
anisotropic formulation n is six.   

 The concept of importance sampling is first applied to the isotropic form of the Green and 
Mkrtichian (1977) limit state function.  The tensile strength design variable (YT), compressive 
strength design variable (YC) and the biaxial compressive strength design variable (YBC) are 
characterized by the two-parameter Weibull distributions.  Here kYT takes the following form  
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Similarly kYc take the following form 
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and 
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Thus the composite sampling function is given by the expression for the isotropic Green and 
Mkrtichian (1977) limit state function  

        , ,
T C BCj T C BC Y T Y C Y BCj j j

k Y Y Y k y k y k y            (450) 

The joint probability density function for random strength has the following form  

        , ,
T C BCj T C BC Y T Y C Y bcj j j

f Y Y Y f y f y f y            (451) 

In both functions it is assumed that YT ,YC and YBC are independent random variables.   

 Thus importance sampling for the Green and Mkrtichian (1977) limit state function begins 
with approximate values for the transformed variables ZYT, ZYC and ZYBC.  These approximate values 
are obtained using the FPI technique.  With these values of the transformed variables then μYT, μYC 
and μYBC are obtained using equation (444).  This requires knowledge of the mean and the standard 
deviation of the strength distribution.  Assuming that each strength parameter is characterized by a 
two parameter Weibull distribution, and with knowledge of the Weibull distribution parameters  
and m for each strength parameter, then the expression 
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can be used to compute the mean for each random strength variable ( is the gamma function) and  
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is used to calculate the standard deviation for the strength random variables YT ,YC and YBC.  This 
tacitly assumes that the random variables are characterized by a two parameter Weibull distribution.  
Thus δYT, δYC and δYBC are computed using equation (445).  With μ and δ defined for all three strength 
random variables, the probability density functions kYT , kYc and kYBC can be formulated.  In addition, 
the cumulative distribution functions KYT, K YC and KYBC are defined.  Next, a random number 
associated with each random variable (YT ,YC and YBC) is generated.  These random numbers 
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generate realizations of each random by utilizing the inverses of KYT, K YC and KYBC.  With realizations 
of the random variables, call them (yT)j,(yC)j and (yBC)j, specific functional values for kYT , kYc and kYBC 
can be generated.  Now a functional value for kj(yT, yC , yBC ) can be generated using equation (450).  
In a similar fashion a functional value for fj(yT, yC,, yBC) can be generated using equation (451).  
Finally, the limit state function is computed using equations (294), (302), (316) as well as (328) and 
this allows the computation of the indicator function using equation (436).  The quantities kj(yT, yC , 
yBC ), fj(yT, yC,, yBC) and I are inserted into equation (437) and the summation is performed for a 
sufficient number of iterations (i.e., large enough N) such that the method converges to Pf. 

 Projections of reliability surfaces are presented in Figure 19 for the isotropic formulation of 
the Green and Mkrtichian (1977) limit state function outlined in a previous section.  Monte Carlo 
simulations with importance sampling technique were utilized to generate the surfaces.  The 
Weibull parameters (m and σθ) for each design variable are  

 mT = 6.58     mC = 12.29   mBC = 13.99 
 T = 17.05  MPa  C = 54.39 MPa  BC = 63.29 MPa 

for isotropy.  Three reliability surfaces are depicted correspond to probabilities of failure of Pf = 
5%, Pf = 50% , and  Pf = 95%.     

 

Figure 19  Burchell’s (2007) failure data with probability of failure curves obtained using Monte 
Carlo simulation modified with importance sampling techniques for the isotropic version of the 

Green Mkrtichian (1977) failure criterion. 
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 Figure 20 depicts the reliability surfaces for the anisotropic version of that same limit state 
function.  Monte Carlo simulations with importance sampling technique were utilized to generate 
the surfaces.  For anisotropy the Weibull distribution parameters for tensile strength in the preferred 
material direction are 

mYT   =   6.58 
YT   = 17.05 MPa 

The Weibull distribution parameters for compressive strength in the preferred material direction 

mYC     =   12.29 
YC  = 54.39 MPa 

The Weibull distribution parameters for tensile strength in the plane of isotropy 

mTT     =   10.12 
TT   = 11.01 MPa 

The Weibull distribution parameters for compressive strength in the plane of isotropy 

mTC     =   10.33 
TC  = 35.90 MPa 

The Weibull distribution parameters for equal biaxial compressive strength in the plane of 
isotropy 

mBC     =  11.85 
BC  = 45.95 MPa 

The Weibull distribution parameters for equal biaxial compressive strength with only one stress 
component in the plane of isotropy 

mMBC     =   13.99 
MBC  = 63.29 MPa 

Three reliability surfaces are depicted correspond to probabilities of failure of Pf = 5% , Pf = 50% , 
and  Pf = 95%.     
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Figure 20  Burchell’s (2007) failure data with probability of failure curves obtained using Monte 
Carlo simulation modified with importance sampling techniques for the anisotropic version of 

the Green Mkrtichian (1977) failure criterion. 
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IV.  Codes and Standards 

Measurements of material strength at failure are taken for various reasons, e.g., to 
conduct a comparison of the relative quality of two materials, or to establish limit loads for a 
given application.  Relative to nuclear power generation design codes and fitness for service 
protocols have recognized the need to characterize the tensile strength of graphite as a random 
variable using an extreme value probability density functions.  Characterizing the associated 
distribution parameters requires more data than is typically required to simply define an average 
value for tensile strength.  The needs of experimentalists who develop test methods and nuclear 
design engineers who formulate design codes should dovetail on the issue of data requirements.  
The two parameter Weibull distribution (an extreme value distribution) has been universally 
adopted to characterize the random variable representing the tensile strength of nuclear graphite.  
Since one of the primary objectives of this project was to develop probabilistic failure models, 
there was motivation to develop ASTM Standard Practice D 7486 (Duffy, Baker and James, 
2013).  This standard outlines a procedure for estimating Weibull distribution parameters from 
failure data - information needed to estimate load limits for a specified level of reactor 
probability of failure.  

Graphite failure data from bend tests or tensile tests are used to determine the Weibull 
modulus (m) and a Weibull characteristic strength (σθ), both of which are specific distribution 
parameters for the Weibull distribution.  These test specimens are primarily subjected to uniaxial 
stress states and ASTM Standard Practice D 7486 (Duffy, Baker and James, 2013) is restricted to 
using only data from tensile and flexural test specimens.  Hence test specimens are failed in 
accordance with either ASTM Standard C 565, ASTM Standard C 651, or ASTM Standard C 
781.  The load at which each specimen fails is recorded and the computed failure stresses are 
used to estimate the distribution parameters using maximum likelihood techniques.  Furthermore, 
the standard assumes failure takes place from one unknown flaw population such that censored 
data techniques are not required. 

The procedures appearing in ASTM Standard Practice D 7486 (Duffy, Baker and James, 
2013) point to a quality assurance program for the design of components fabricated from 
graphite material.  This quality assurance program was developed by Parikh (2011) under 
support from this project.  One can easily generate point estimates from failure data using the 
maximum likelihood estimators that appear in the standard.  The quality of the estimated 
parameters relative to the true distribution parameters depends fundamentally on the number of 
samples taken to failure.  More information regarding the population, i.e., more failure data, 
always improves the quality of the point estimates of the distribution parameters.  The question 
becomes how much data is sufficient given the application.  Confidence intervals and hypothesis 
testing can be utilized to answer this question and at the same time assess the goodness of the 
estimated distribution parameters.  The quality assurance program outlined in Parikh (2011) 
speaks directly to this issue of how good are the estimates and is currently being implemented 
into the ASME Boiler and Pressure Vessel Code (Section III, Division 5, Subsection HH, 
Subpart A Graphite Materials).   

Parikh’s (2011) effort focused on a particular type of confidence bound known as 
likelihood confidence rings.  Hypothesis testing and the relationship it maintains with parameter 
estimation were outlined.  A test statistic was adopted that allows one to map out an acceptance 
region in the m -  parameter distribution space.  The theoretical support for the equations used 
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to generate the likelihood rings were presented.  Inferential statistics allowed Parikh (1911) to 
generate confidence bounds on the true distribution parameters utilizing available test data.  
These bounds are dependent on the number of samples used to calculate point estimates.  The 
use of inferential statistics enables the calculation of likelihood confidence rings.  The concept of 
how the true distribution parameters lie within a likelihood ring with a specified confidence was 
presented in Parikh (2011).  The material acceptance criterion depends on establishing an 
acceptable probability of failure of the component under design as well as an acceptable level of 
confidence associated with estimated distribution parameter.  The concepts of the likelihood 
confidence rings and the component probability of failure curves were combined graphically 
providing a visual of the utility and simplicity of the method. 
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