
 
 

 

Uncertainty Quantification of Model Extrapolation in Neural Network-
informed Turbulent Closures for Plenum Mixing in HTGRs 

PI:  Som Dutta, Utah State 
University 

Collaborators: Mauricio Tano-Retamales – Idaho 
National Lab; Izabela Gutowska – Oregon State 
University; Paul Fischer – University of Illinois at 
Urbana-Champaign 

 
Program:  Modeling & 
Simulation (M&S-2)  

 

ABSTRACT:  
Background:  Advent of  cheap computational resources has brought Data-driven machine-learning 
(ML) models to different engineering fields, including Nuclear Engineering . Within the spectrum of ML 
models, a class of models that mathematically replicates the connection between neurons within a brain 
are neural networks (NN). NN based models have been found to provide swift and accurate prediction 
of complex thermohydraulic phenomena and processes. At one end of the scale-spectrum, it can be used 
as a surrogate model for the entire process/cycle, e.g. integrated regenerative transcritical cycle, 
completely replacing the physics based model. At the other end, NN models are being used as turbulence 
closures to improve accuracy of large eddy simulations (LES) and RANS based CFD simulations. 
Despite their success, model extrapolation, that is the ability to predict accurately beyond the range of 
training data remain the primary constraint to their widespread adaptation, especially for nuclear systems 
where failure of a model can be catastrophic. Thus, from a regulatory standpoint it is essential to quantify 
the uncertainty in prediction of the NN models, in case the operating condition (e.g. transients during 
accidents) is outside the range of the training data set. In the proposed study we will systematically 
quantify the uncertainty in these situations, for NN-based turbulence closures used in conjunction with 
URANS based CFD for simulating complex thermohydraulic flows. Modeling turbulent phenomena in 
nuclear reactors is challenging as one needs to obtain high-accuracy models with a reasonable 
computational time to run realistic transients, which could last hours or days. Standard coarse-mesh 
RANS/URANS turbulence models are not able to provide the necessary accuracy, whereas the 
turbulence-eddy resolved direct numerical simulations (DNS) or high-fidelity LES simulations are 
computationally intractable. Hence, neither DNS/LES nor RANS/URANS is currently used for the 
regulatory licensing of advanced reactors. The proposed research will aim at solving this fundamental 
licensing problem. It will propose better neural network based turbulence closures for the URANS 
equations, which are informed by data from high-fidelity LES simulations, and it will also build a 
framework for quantifying uncertainties in these closures. 
Objectives: 
The objective is to quantify and understand the uncertainty (UQ) in turbulence predicted by neural 
network (NN) based URANS models, when the neural network models are operating beyond the range 
of conditions they have been trained for. The proposed UQ framework will be applied to 

1. Different flow and thermal mixing phenomena, ranging from canonical buoyant-jets and T-
junctions, to complex flows within the plenum of high-temperature gas reactors (HTGRs). 
Establishing the baseline for the framework to be applied at advanced reactors.  

2. Both steady and transient flows observed in HTGRs, helping establish the uncertainties for the 
safety parameters of interest within the framework of regulatory licensing.  

 
 


