

Systems Analysis and Integration Campaign

FY 2019 CINR Webinar

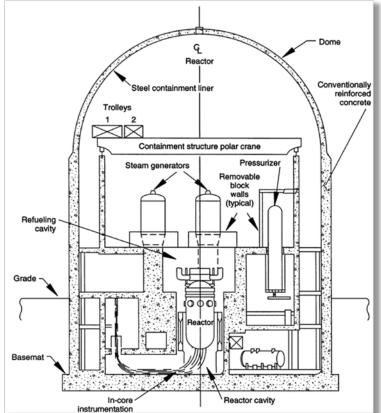
Fabrication Process Assessments for Cost Algorithm

B. P. Singh U.S. DOE Office of Nuclear Energy

August 2018

SA&I Campaign Objectives

Nuclear Energy


- Perform top-notch analysis of nuclear energy systems to determine technical and economic viability, identifying benefits and challenges
- Utilize and enhance leading-edge systems analysis tools, models and processes & capabilities
 - Campaign Focus Area of Call: Development of algorithms for estimating the cost of nuclear energy facilities and sub-systems in a bottom-up evaluation approach
 - Supports improving the cost basis of fuel cycle facilities that have a substantial impact on the economic performance of nuclear energy systems
 - Enables estimating capital costs of advanced nuclear reactors and fuel cycle facilities, including for systems that have not been built

Background Information

Nuclear Energy

- The Systems Analysis and Integration (SA&I) Campaign is developing algorithms for estimating the capital cost of systems and subsystems in a Nuclear Energy System (NES), e.g., advanced reactor designs, fuel fabrication facilities, fuel processing facilities, etc.
 - Facilitates independent assessments of claims about capital costs for advanced concepts
 - Standardizes approach for capital cost estimation
 - Fills an identified gap in the tools available to DOE
 - Offers insights on the cost drivers for advanced designs
 - Informs R&D decision making about cost reduction for advanced concepts

The SA&I Campaign started working on this topic in FY 2017

- Total costs of complete large mechanical nuclear components, e.g. RPVs, etc., were derived from older sources, as a function of size and material
- Work done in FY 2018 incorporated some knowledge from the forging industry
 - Helped confirm the cost ranges and the relative costs of initial fabrication steps for large nuclear components, as a function of material and fabrication complexity

Expectations for the FY 2019 Call

Nuclear Energy

- Provide models, algorithms and descriptions of fabrication complexity, and ultimately of the cost of fabrication of large mechanical components, whether Nstamped or not
 - Engage industrial partners (e.g., forging companies, fabricators, nuclear vendors, architect engineers etc.)
 - Starting from the fabrication steps and complexity, develop cost models that can be implemented in the SA&I cost algorithms for advanced NES
- All the fabrication steps should be included in the analysis
 - Melting of ingot with proper chemistry and condition control, forging, extrusion, plate bending, welding, machining, quality control, inspections, paperwork, and delivery to customers, etc.
- For the various fabrication steps, the cost models developed should consider various materials typically used in nuclear constructions (e.g., carbon and stainless steel, advanced alloys) and nuclear versus non-nuclear standards
- Identify the major cost drivers
- Close interaction with the campaign national laboratory personnel