## Nuclear Energy University Program (NEUP) Fiscal Year 2019 Annual Planning Webinar Molten Salt Reactor (SubtopicRC-7)

Brian Robinson
Office of Nuclear Technology Research and Development U.S. Department of Energy

August 7, 2018

## Molten Salt Reactor (MSR) Strategy

- Assist in the near-term deployment of molten salt reactors, both salt-cooled and salt-fueled concepts by establishing viability, developing needed research capability and enabling technology, reducing cost, and accelerating development to facilitate industry success.


## Examples of MSR Designs being Developed by Industry



Elysium USA, MCSFR

## Molten Salt Reactor Experiment (MSRE)

Operated at Oak Ridge National Laboratory from 1965 to 1969, is the Primary Reactor-Based Experience with Molten Salts


## Molten Salt Reactor Experiment (MSRE)

- Fuel ${ }^{235} \mathrm{U},{ }^{233} \mathrm{U}$ and $\left.{ }^{239} \mathrm{Pu}\right)$ dissolved in a fluoride salt
- Liquid-fuel reactor
- Thermal-spectrum limited breeder reactor
- 7.34 MW
- $1225^{\circ} \mathrm{F}$ ( 662 C ) outlet temperature
- Fuel salt was 65\% Li7F - 29.1\% BeF2-5\% ZrF4 - 0.9\% UF4

- Program cancelled when the liquid metal fast breeder reactor chosen
- New interest in MSR
- Fast spectrum or thermal spectrum
- Liquid fuel or solid fuel
- Target diverse markets - base load electricity generation, process heat applications, desalination, water purification, remote locations


## RC-7.1: Fuel Salt Sampling Technology Development - Project Scope

- Proposals are requested to develop and demonstrate, in a non-radioactive environment, a modern equivalent to MSRE's sampler-enricher with improved reliability and potential to serve as a technology model to guide deployment in future MSRs
- Key parameters such as;
- progress of corrosion
- fissile material consumption and isotope distribution
- fuel salt redox condition
- in-leakage of coolant salt by measuring fuel salt composition


## RC-7.2: Evaluation of 316SS Lifetime in MSRs - Project Scope

- Experimental projects are sought to evaluate the combined corrosion and mechanical stress impact on SS316 component service lifetimes and design limits
- Current R\&D has shown;
- High salt temperature, neutron damage, and mechanical service requirements will cause the material properties to degrade over time
- Generalized and grain boundary corrosion are expected to weaken the surface making it more vulnerable to erosion
- A key design for a molten salt heat transport system is the maximum allowable fluid velocity
- Understanding material aging under service conditions will support establishing an evidence-based flow specification


## RC-7.3: Radiation Hardened Vision Systems - Project Scope

- Demonstration of a multi-camera, radiation hardened 3D vision system to continuously update the in-containment model status is requested. In addition, demonstration of techniques to repair and/or replace vision system components within containment is also requested.
- A key elements to consider;
- Enabling the automation system or the operator to perform tasks is to provide real-time 3D visual updates of the positioning of the tooling, components, and surround structures
- Depending on the local shielding employed, the MSR containment environment may have very high radiation dose rates
- Radiation hardened remote tooling and operations have been developed in support of O\&M in multiple prior high-radiation environments


## RC-7.4: Molten Salt Mechanical Filters- Project Scope

- Experimental projects are sought that demonstrate fuel salt mechanical filter performance and operational issues using non or low radioactivity materials
- MSR R\&D has shown;
- Plating out corrosion resistant materials onto surfaces would be considered a positive/protective effect
- It is anticipated that mechanically filters will be used to remove fission products out of the salt
- Under certain conditions, fissile materials may also plate out onto filters
- Sintered nickel is the leading candidate structure to serve as a mechanical filter
- Filtering out radionuclides has a number of complex interrelated issues such as;
- monitoring filter condition and performance
- introducing and removing the highly-radioactive filter
- cooling and shielding the filter once removed
- surveying the filter for fissile material control and accountability


## RC-7.5: Shutoff Valve Technology Development - Project Scope

- On a molten salt flow loop, design and demonstrate MSR coolant salt shutoff valves whose component technologies would be suitable for qualification under a 10CFR50 Appendix B quality assurance program
- Information to consider;
- The primary coolant salt will be operated at a somewhat higher pressure than the fuel salt to cause in-leakage in the event of heat exchanger tube failure
- Primary coolant salt lines penetrate radionuclide containment layers providing a potential barrier bypass route
- Ability to provide high reliability closure to the primary coolant salt lines on-demand decreases the risk of radionuclide release
- Valves may be a safety-related item as they could be relied upon to mitigate the impact of postulated accidents
- Valves should remain operable even under beyond design basis event conditions
- High-reliability, molten salt, safety-related shutoff valves with local activation energy storage have not previously been developed or demonstrated


## Points of Contact for RC-7 Molten Salt Reactor

- Federal POC
- Brian Robinson
- Brian.Robinson@nuclear.energy.gov
- (301) 903-5694
- Technical POC
- David Holcomb
- holcombde@ornl.gov
- (865) 576-7889

