Nuclear Energy

US Nuclear Science User Facilities (NSUF) Overview

Alison Hahn
Office of Nuclear Energy
U.S. Department of Energy

FY2018 Consolidated Solicitation Webinar

August 9, 2017

NSUF General

Established in 2007 as DOE Office of Nuclear Energy first and only user facility

- Irradiation effects in nuclear fuels and materials
- Provide access to capabilities and expertise at no cost to the user
- Support design, fabrication, transport, irradiation, PIE, disposition
- Link intellectual capital with nuclear research infrastructure to fulfill mission of DOE-NE

Projects are selected through an open competitive proposal process

- Consolidated Innovative Nuclear Research (1 call/year)
 - Irradiation + PIE (\$1.0M \$4.0M, up to 7 years)
 - PIE only (~\$500K, up to 3 years)
 - Irradiation only (\$500K \$3.5M)
 - Beamlines at other user facilities
- Rapid Turnaround Experiments (3 calls/year)
- Proposals welcome from University, National Laboratory, Industry, Small Business

NSUF - A consortium

A group formed to undertake an enterprise beyond the resources of any one member

- Partner Facilities program started in 2008
- Name changed to Nuclear Science User Facilities in 2014
- 11 Universities + 4 Universities in CAES, 7 National Laboratories, 1 industry

NSUF Capabilities

Nuclear Energy

Neutron
Irradiations

lon Irradiations

Hot Cells & Shielded Cells

Beamlines

High Performance Computing

NATIONAL LABORATORY

NSUF Capabilities

■ High radiation level measurements/instrumentation

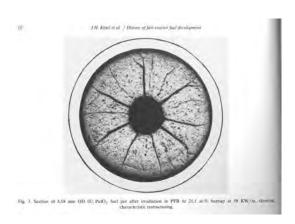
- Neutron Radiography
- Elemental & Isotopic Analyses
- Gas Sampling and Analyses
- Profilometry
- Gamma Scanning
- Mechanical Testing (tensile, charpy)
- Micro-focus X-ray Diffraction
- Thermal Analyses
- Eddy Current
- IASCC
- Electron Probe Micro Analysis (EPMA)
- Electron and Optical Microscopy
- Focused ion Beam (FIB)

NSUF Capabilities

■ Low radiation level measurements/instrumentation

- Electron and Optical Microscopy
 - Scanning Electron Microscopy (SEM)
 - Transmission Electron Microscopy (TEM)
- Focused Ion Beam (FIB)
- Mechanical Testing
 - Tensile
 - Hardness
 - Micro- and Nano-Indentation
- X-ray Diffraction
- Photo Electron Spectroscopy
 - X-ray Photo Electron Spectroscopy (XPS)
 - UV Photo Electron Spectroscopy (UPS)
 - Auger Spectroscopy
- Irradiation Assisted Stress Corrosion Cracking (IASCC)
- Positron Annihilation Spectroscopy
- Atomic Force Microscopy
- Secondary Ion Mass Spectrometry

- Thermal Analysis
 - Thermal Conductivity
 - Heat Capacity
 - Thermal Expansion
- Nuclear Magnetic Resonance



Impactful Nuclear R&D <

Nuclear Science User Facilities

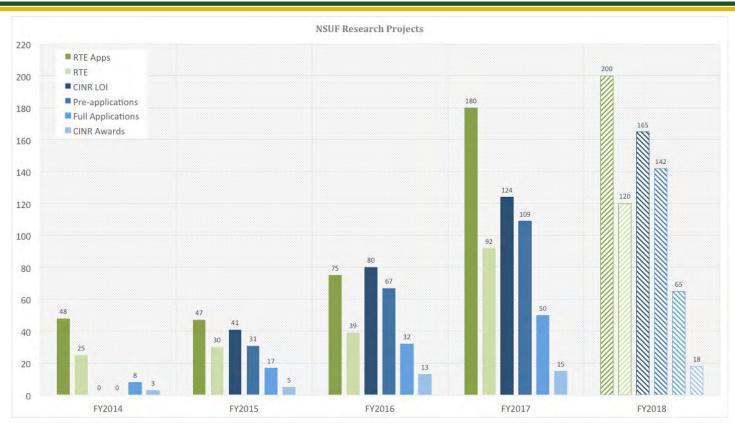
Nuclear Energy

- Understanding atomic level phenomena in fuels that affect thermal transport, elemental migration/diffusion, interface interaction, etc. as complex microstructures develop under irradiation
 - Ceramic, metallic, TRISO, ATF
- Understanding fundamental defect evolution in irradiated structural materials across multiple length scales as they affect mechanical properties.
 - RPV, austenitic, F/M, Zr alloys, ATF
- Development of innovative radiation resistant materials for advanced reactor systems
- Development of radiation resistant sensors for collecting high fidelity on-line irradiation test data
- Development of materials from advanced manufacturing techniques
- Providing fundamental actinide nuclear data that can help inform advanced reactor and fuel cycle modeling and simulation campaign

Nuclear Energy

Nuclear Fuels and Materials Library (NFML)

- The library includes over 3500 specimens as part of the NSUF awarded research. 6K – 7K additional specimens by year end.
- Most materials are neutron irradiated with small number of ion irradiated materials.
- SAM irradiation series to stock library moving forward
- Effort to consolidate materials into easily accessible locations to reduce costs of retrieval.
- Web-based searchable database through nsuf.inl.gov
- Interest in collaboration on international efforts.
- Materials Include:
 - Steels
 - Other alloys
 - Ceramics
 - Pure materials
 - Actinides
 - Fission products


Nuclear Energy Infrastructure Database (NEID)

- nsuf-infrastructure.inl.gov
- A searchable and interactive database of all pertinent infrastructure supported by, or related to, the DOE Office of Nuclear Energy (DOE-NE)
- Used for analyses to identify needs, redundancies, efficiencies, distributions, etc., to best understand the utility of DOE-NE's available infrastructure, inform the content of infrastructure calls, and provide information to NSUF users
- Infrastructure information collected can be combined with information on R&D needs as part of infrastructure gap analysis

Historical and Projected Growth

Nuclear Energy

Graphics created by Brenden Heidrich

CINR type projects support

- ☐ FY 2014 \$400K, 8 full proposals, 3 awards
- ☐ FY 2015 \$4.1M, 41 LOIs, 31 pre-proposals, 17 full proposals, 5 awards
- ☐ FY 2016 \$10M, 80 LOIs, 67 pre-proposals, 32 full proposals, 13 awards
- ☐ FY 2017 ~\$11M, 124 LOIs, 108 pre-proposals, 50 full proposals, 15 awards

