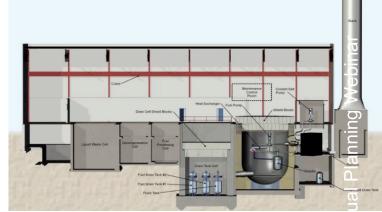


Nuclear Energy University Program (NEUP) Fiscal Year 2020 Annual Planning Webinar Molten Salt Reactor (Subtopic IRP-RC-1)

Brian Robinson Office of Nuclear Technology Research and Development U.S. Department of Energy August 6, 2019


Molten Salt Reactor Experiment (MSRE)

Operated at Oak Ridge National Laboratory from 1965 to 1969, is the Primary Reactor-Based Experience with Molten Salts

Molten Salt Reactor Experiment (MSRE)

- Fuel (²³⁵U, ²³³U and ²³⁹Pu) dissolved in a fluoride salt
 - Liquid-fuel reactor
 - Thermal-spectrum limited breeder reactor
 - 7.34 MW
 - 1225°F (662 C) outlet temperature
 - Fuel salt was 65% Li7F 29.1% BeF2 5% ZrF4 0.9% UF4
 - Program cancelled when the liquid metal fast breeder reactor chosen
- New interest in MSR
 - Fast spectrum or thermal spectrum
 - Liquid fuel or solid fuel
 - Target diverse markets base load electricity generation, process heat applications, desalination, water purification, remote locations

IRP-RC-1: INFRASTRUCTURE TO SUPPORT MOLTEN SALT REACTORS

- Proposals are requested to develop and enhance domestic university capabilities to generate high-quality data, in coordination with the DOE MSR Campaign and MSR developers
 - Emphasis should include the establishment of new or enhanced research infrastructure at universities to broaden the base capability, to provide high-quality data for model validation or material property performance and prepare students to enter the emerging advanced reactor technical field
 - The development and/or expansion of university, industry and national laboratories irradiation facilities is strongly encouraged
 - Infrastructure support could include but are not limited to salt production, characterization and property measurement, and isotope production and isolation

IRP-RC-1: INFRASTRUCTURE TO SUPPORT MOLTEN SALT REACTORS EXAMPLES

- To ensure proposed infrastructure efforts complement existing research, specific examples are provided below. In addition to these examples, other proposals enhancing the domestic MSR research infrastructure are welcome
 - Experimental Validation of Thermal Hydraulic Simulations
 - MSR code validation with appropriately scaled fundamental, SET, or MET experiments that complement those that have been, or can be, conducted at suitable, existing integral facilities.
 - Advanced Heat Exchangers
 - Experimental Data for Fission Product Retention, Diffusion and Transport Properties
 - Study the release and transport behavior of radionuclides (gaseous, mists, foams) in liquid-fueled molten salt reactors under representative irradiation conditions.
 - Targeted Irradiations of Core Internal and Boundary Materials
 - understand radiation damage effects (swelling, embrittlement, segregation, etc.) on advanced structural materials for representative molten salt reactors and also for candidate non-metal reactor core structural material, such as graphite or silicon carbide.

Points of Contact for IRP-RC-1 Molten Salt Reactor

Federal POC

- Brian Robinson
- Brian.Robinson@nuclear.energy.gov
- (301) 903-5694

Technical POC

- Lou Qualls
- <u>quallsal@ornl.gov</u>
- (865) 576-7889