SharePoint

Skip Navigation LinksFY21_Infrastructure_Awards

​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​FY 2021 Infrastructure Grants

Twenty-four university-led projects will receive more than $5.9 million for research reactor and infrastructure improvements, providing important safety, performance, and student education-related upgrades to a portion of the nation's 25 university research reactors, as well as enhancing university research and training infrastructure.

A full list of infrastructure recipients is listed below. Actual project funding will be established during contract negotiation phase.

FY 2021 Infrastructure Awards​
  
  
  
  
  
  
  
Description
  
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25190.pdf
21
Abilene Christian UniversityInfrastructureGeneral Scientific Infrastructure$367,793
This project supports establishing new and unique real-time direct chemical analysis capabilities for molten salt systems, specifically adding Raman and gamma spectroscopies to the Abilene Christian University (ACU), the Nuclear Energy eXperimental Testing (NEXT) Lab molten salt and materials characterization tools.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract-GSI-21-25206.pdf
21
Alfred UniversityInfrastructureGeneral Scientific Infrastructure$90,000
This project supports procurement and installation of a custom-made high-speed terahertz (THz) dual scanner system that will demonstrate non-destructive imaging of AM ceramic materials and composites for TCR core application.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25188.pdf
21
Brigham Young UniversityInfrastructureGeneral Scientific Infrastructure$180,269
This project advocates the purchase of rotating cylinder electrode (RCE) to provide high throughput testing of materials and measurement of physical properties in molten salts. The proposal suggests that the purchase will yield an "Intermediate" advance on current methods for interrogating corrosion in molten salts.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summay%20Abstract%20GSI-21-25233.pdf
21
Colorado State UniversityInfrastructureGeneral Scientific Infrastructure$39,500
This project supports procuring a new and well-characterized set of neutron detectors (Bonner Spheres) and the ATTILA4MC computer code to provide additional neutron detection capacity and neutron spectroscopy capabilities. Primary utilization is to enhance student education and training in the area of neutron detection and dosimetry.
  
https://neup.inl.gov/FY21%20Abstracts/FY2021%20Summary%20Abstract%20GSI-21-25109.pdf
21
Florida International UniversityInfrastructureGeneral Scientific Infrastructure$302,826
This project promotes the purchase of analytical instruments, including an X-ray absorption spectrometer and a probe for NMR spectrometer, to enhance radiochemistry research.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25197.pdf
21
Missouri University of Science and TechnologyInfrastructureGeneral Scientific Infrastructure$304,724
This project will support the purchase of a pulsed radio frequency glow discharge optical emission spectrometer (GDOES), with the capability of ultrafast elemental depth profiling. Potential unique capability as a tool for high throughput compositional characterization of nuclear materials and fuels.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25130.pdf
21
North Carolina State UniversityInfrastructureGeneral Scientific Infrastructure$290,000
This project requests funding for the purchase of a state-of-the-art high resolution scanning acoustic microscopy system for in high throughput characterization of nuclear fuels, sensor materials, cladding materials, reactor structural materials and 3D printed components. This novel non-destructive characterization capability will enhance capabilities at a current NSUF partner institution providing a unique offering within NSUF NEID.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25148.pdf
21
State University of New York, Stony BrookInfrastructureGeneral Scientific Infrastructure$204,327
This project supports procurement of a suite of equipment dedicated to characterizing radioactive materials. Microscale specimen preparation and property testing equipment is an area of significant need within the nuclear research complex.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25122.pdf
21
Texas A&M UniversityInfrastructureGeneral Scientific Infrastructure$246,418
This project will provide support to enhance Texas A&M Univ. Accelerator Laboratory, specifically (1) to increase the proton irradiation efficiency by one order of magnitude; (2) to offer the new capability of simultaneous proton ion irradiation and corrosion testing in molten salts related to molten salt reactor (MSR) applications; and (3) to develop the new capability of in-situ characterization of specimen thickness and elemental distributions during corrosion testing. The project will lead to a capability that is not duplicated at other facilities.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25126%20.pdf
21
University of MichiganInfrastructureGeneral Scientific Infrastructure$350,000
This project will support the acquisition and deployment of a Gatan GIF (Gatan Imaging Filter) Continuum ER system in the Michigan Ion Beam Laboratory (MIBL) ThermoFisher Tecnai TF30 scanning/transmission electron microscope (S/TEM) that is augmented to allow in situ dual ion beam irradiation. This purchase will result in a significant enhancement of the characterization capabilities of MIBL system, that will result in high-throughput experimental workflows including in-situ TEM ion irradiations.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25140.pdf
21
University of Notre DameInfrastructureGeneral Scientific Infrastructure$375,332
This project supports development of a neutron irradiation station (NIS) at the Nuclear Science Laboratory (NSL) at the University of Notre Dame (UND) providing a monoenergetic flux of neutrons in the energy range of a few keV to a few MeV produced via (p,n) or (a,n) reactions on low-Z target materials, such as Li and Be. Significant utilization is expected within both educational and R&D missions, with R&D utilization expanding from nuclear data to radiation effects studies. The capability will be hosted by NSF-supported facility with a significant postgraduate "hands-on" education program.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25232.pdf
21
University of Puerto Rico at MayagüezInfrastructureGeneral Scientific Infrastructure$250,000
The proposed facility in this projects enables experiments to correlate bubbles and bubbles clusters size, dynamics, composition, terminal velocity, temperature, environmental pressure and composition and purity with their aerosol production at bursting, at temperatures from operating conditions up to 1000 °C. Unique capability for molten salts systems.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25238.pdf
21
University of Texas at El PasoInfrastructureGeneral Scientific Infrastructure$250,000
This project requests funds for the acquisition of an Instron 8862 servo-electric testing system with intelligent furnace control capable of high temperature quasi-static (tensile, creep, stress relaxation, etc.) and dynamic testing (low cycle fatigue, creep-fatigue, etc.).
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20GSI-21-25241.pdf
21
University of Texas at San AntonioInfrastructureGeneral Scientific Infrastructure$286,344
This project will support the fabrication and testing of advanced nuclear fuels and materials, specifically the development of the uranium-bearing compounds, alloys, and composites. Specific focus is the synthesis of novel samples of relevant fuel compounds, like uranium nitride (UN) and the fabrication of dense, uniform geometries (pellets) of these samples as well as fuel compounds such as namely uranium silicides, carbides, composite forms of these fuels, and metallic fuel alloys/ compounds.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25150.pdf
21
North Carolina State UniversityInfrastructureReactor Upgrades$341,760
This project will upgrade and enhance the safety, operations, and utilization infrastructure at the PULSTAR reactor of North Carolina State University (NCSU); installation of modern reactor console instrumentation to support the continued safe and reliable operation of the PULSTAR reactor and installation of comprehensive and facility wide radiation protection and moisture/temperature sensor systems.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25227.pdf
21
Oregon State UniversityInfrastructureReactor Upgrades$555,416
This project will upgrade necessary spare items to ensure sustained operation without lengthy unplanned outages for the Oregon State University Mk II Oregon State TRIGA® Reactor (OSTR) at the Oregon State University Radiation Center.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25222.pdf
21
Pennsylvania State UniversityInfrastructureReactor Upgrades$179,715
This project will build and install a permanent, high-temperature, molten salt neutron irradiation and post-irradiation analysis capability at the Penn State Breazeale Reactor (PSBR).
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25228.pdf
21
Reed CollegeInfrastructureReactor Upgrades$140,000
This project will improve reliability of the reactor program at Reed College by purchasing a spare Compensated Ion Chamber (CIC) to monitor the reactor power. The CIC allows the reactor operator to monitor and control the reactor power.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25112.pdf
21
The Ohio State UniversityInfrastructureReactor Upgrades$73,539

This project will support replacement parts for essential OSU Research Reactor (OSURR) control-room equipment that has been in continuous service for decades; custom reactor protection system (RPS) modules for which the lab has no spares​. ​


  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25142.pdf
21
University of California, IrvineInfrastructureReactor Upgrades$74,950
This project will increase the reliability of the TRIGA reactor instrumentation and control systems, increase the radiation safety for experiments while expanding research capabilities, and improve the fuel surveillance and management program.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25213.pdf
21
University of FloridaInfrastructureReactor Upgrades$282,000
The University of Florida will acquire an automated pneumatic sample transfer system to be used for moving samples into the University of Florida Training Reactor for irradiation and transferring the samples to laboratories for experimental use.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25202.pdf
21
University of Maryland, College ParkInfrastructureReactor Upgrades$208,140
This project will modernize the radiation safety equipment and radiation detection capabilities at the Maryland University Training Reactor.
  
https://neup.inl.gov/FY21%20Abstracts/FY_2021_Summary_Abstract_RU-21-25132.pdf
21
University of Wisconsin-MadisonInfrastructureReactor Upgrades$222,294
This proposal will enhance nuclear energy-related research and development at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM). Proposal seeks to enhance the neutron radiography capabilities at the reactor, by acquiring a high-resolution detector, rotation stage, visualization software and a high-performance computer.
  
https://neup.inl.gov/FY21%20Abstracts/FY%202021%20Summary%20Abstract%20RU-21-25215.pdf
21
Washington State UniversityInfrastructureReactor Upgrades$302,657
This project will enhance the safety, performance, and continued operational reliability of the WSU NSC 1.0 MW TRIGA conversion research reactor: 1) Restore the reactor tank concrete, which is in much need of repair, and 2) Replace the epoxy concrete tank liner with a modern, robust epoxy liner that has already been successfully utilized and in service at other reactor facilities.
​​
​​