SharePoint

Skip Navigation LinksFY21_NSUF_Awards

​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​FY 2021 Nuclear Science User Facilities Awards

DOE has selected one industry, two DOE National Laboratories, and one university-led project that will take advantage of NSUF capabilities to investigate important nuclear fuel and material applications. DOE will support three of these projects with a total of $1.2 million in research funds. All four of these projects will be supported by more than $3.9 million in facility access costs and expertise for experimental neutron and ion irradiation testing, post-irradiation examination facilities, synchrotron beamline capabilities, and technical assistance for design and analysis of experiments through NSUF. 

A complete list of NSUF projects with their associated abstracts is available below.      ​
 

2021 NSUF Award Abstracts
  
  
  
  
  
  
  
Description
  
https://neup.inl.gov/SiteAssets/FY%202021%20Abstracts/CFA-21-24335_TechnicalAbstract_2021CFATechnicalAbstract21-24335.pdf
21
Idaho National LaboratoryNuclear Science User FacilitiesJoint R&D with NSUF Access$500,000

​The objective of this proposed project is to deploy a recently developed fiber-optic-based instrument in the MIT Research Reactor to perform in-pile thermal conductivity measurements of fuels and materials. The design of this instrument is based on the photothermal radiometry. In this method, thermal conductivity is measured by locally heating the sample surface and measuring the transient temperature gradient by collecting infrared black-body radiation.​

  
https://neup.inl.gov/SiteAssets/FY%202021%20Abstracts/2021%20CFA%20Technical%20Abstract%20CFA-21-24020.pdf
21
North Carolina State UniversityNuclear Science User FacilitiesJoint R&D with NSUF Access$500,000

​The project will focus on a systematic study of irradiation effects on emerging ultrawide bandgap Ga2O3 high temperature and radiation-resistant sensor materials through a series of well-designed neutron irradiation and post-irradiation examination (PIE) experiments.​

  
https://neup.inl.gov/SiteAssets/FY%202021%20Abstracts/CFA-21-24327_TechnicalAbstract_2021CFATechnicalAbstract21-24327.pdf
21
Pacific Northwest National LaboratoryNuclear Science User FacilitiesJoint R&D with NSUF Access$200,000

​Researchers will study the effect of neutron irradiation and friction stir welding (FSW) on Ni-based oxide dispersion strengthened (ODS) MA754 to understand the general trend of microstructural evolution and resulting radiation-hardening, in order to develop appropriate processing-structure-property-dose correlations. Efforts will also be made to compare the neutron irradiation performance of ODS and FSW concepts on Ni-base and Fe-base alloys (MA754 vs. MA956).​

  
https://neup.inl.gov/SiteAssets/FY%202021%20Abstracts/CFA-21-24397_TechnicalAbstract_2021CFATechnicalAbstract_CFA-21-24397.pdf
21
GE ResearchNuclear Science User FacilitiesNSUF Access Only$-

​The objective of this proposal is to determine how the FeCrAl alloy fabrication route determines the microstructure and mechanical properties following neutron irradiation. FeCrAl alloys are fabricated through conventional melting/forging, additive manufacturing, and powder metallurgy. Irradiation effects on microstructure (irradiation induced defect clusters and precipitation) and the corresponding impact on mechanical properties (hardness and embrittlement) will be evaluated.​


*Actual project funding will be established during the award negotiation phase.​
​ ​​