IRP Funded Projects
Home / Integrated Research Projects / IRP Funded Projects
Projects by Year
FY 2015 Integrated Research Project Awards
The Energy Department is also awarding $13 million for 4 Integrated Research Projects (IRPs) that will deliver solutions to high priority nuclear energy research challenges, including the development of accident tolerant fuel options for near term applications, benchmarking for transient fuel testing, and approaches to dry cask inspection and nondestructive evaluation. IRP award recipients are listed below.
Title | Institution | Estimated Funding | Abstract | Project Description | Project Type | Fiscal Year |
---|---|---|---|---|---|---|
Spark plasma sintering for nuclear fuel and alloy fabrication at Massachusetts Institute of Technology | Massachusetts Institute of Technology | $290,875.00 | Massachusetts Institute of Technology will provide $40,875 cost share to acquire a state-of-the-art spark plasma sintering (SPS) set up to enhance educational and research capabilities in high throughput nuclear fuels, sensor materials, cladding materials, and reactor structural materials fabrication. Total estimated project cost $331,750. | General Scientific Infrastructure | FY2024 | |
High-Throughput Serial Sectioning of Nuclear Fuels, Materials, and Sensors | Purdue University | $299,869.00 | Purdue University will provide $49,869 cost share to acquire an automated, high-throughput serial sectioning instrument for three-dimensional characterization of nuclear fuels, materials, and sensors. Total estimated projected cost $349,738. | General Scientific Infrastructure | FY2024 | |
Simulating Nuclear Radiation Environments and Testing Capabilities for Electronics | University of Central Florida | $249,970.00 | Objective of the proposal is to develop an advanced capability for simulating and studying extreme environments with elevated radiation dose and high temperature conditions similar to that in nuclear facilities. | General Scientific Infrastructure | FY2024 | |
Development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Testing | University of Illinois at Urbana-Champaign | $263,806.00 | University of Illinois at Urbana-Champaign will provide $13,806 cost share for the development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Research. Total estimated project cost $277,612. | General Scientific Infrastructure | FY2024 | |
A High Current, High Energy Helium Beamline for Accelerated Nuclear Materials Development | University of Michigan | $409,826.00 | University of Michigan will provide $159,826 cost share to acquire and deploy a new high current helium ion source and corresponding beamline components at the Michigan Ion Beam Laboratory (MIBL) to form a new high current, high energy helium beamline to enable nuclear materials studies including in-situ helium effects in stressed specimen configurations. | General Scientific Infrastructure | FY2024 | |
Commissioning of an easyXAFS to Enable Understanding of Short Order Structure in Nuclear Materials | University of Nevada, Reno | $292,085.00 | University of Nevada, Reno will provide $42,085 cost share to purchase an easyXFAS system, a high resolution, hard X-ray monochromator for X-ray absorption spectroscopy (XAS) measurements. This instrument provides signal strengths approaching those from synchrotron-based XAS systems, and would enable easy analysis of radioactive samples and rapid iterations on experiments. Up to 33% of the time will be dedicated for external users. Innovative laboratory modules will be created showcasing the use of the facility. Total estimated project cost $334,170. | General Scientific Infrastructure | FY2024 | |
In situ Characterization of Transient Radioactive Compounds | University of Notre Dame | $247,056.00 | Project will add facilities at Notre Dame Radiation Laboratory for the handling of radioactive samples. | General Scientific Infrastructure | FY2024 | |
In situ ion irradiation testing facilities for the investigation of nuclear materials under mechanical and thermal extremes | University of Wisconsin-Madison | $339,671.00 | University of Wisconsin-Madison will provide $89,671 cost share and will establish two novel testing stations coupled to the University of WisconsinÐMadison (UW-M) Ion Beam Laboratory (IBL)Õs 1.7 MV Tandem accelerator. Total estimated project cost $429,342. | General Scientific Infrastructure | FY2024 | |
Novel Optical Spectroscopy System (NOSS) to Enhance VCU Advanced Materials Research and Education | Virginia Commonwealth University | $235,908.00 | Virginia Commonwealth University will develop a novel optical spectroscopy system to strengthen and enhance research & teaching capabilities for material characterization & analysis of advanced nuclear fuel and waste. | General Scientific Infrastructure | FY2024 | |
Establishing a Nuclear Science and Radiochemistry Instrumentation Hub for Education and Research at Washington State University | Washington State University | $266,063.00 | Washington State University will provide $16,064 cost share to enhance their nuclear science and radiochemistry research and education infrastructure with the purchase and installation of 1) a liquid scintillation counter with an alpha-beta separation package and 2) a mobile gamma spectrometer capable of measuring low energy gamma-rays (< 100 keV) and can be readily transported to teaching and research labs. Total estimated project cost $282,127. | General Scientific Infrastructure | FY2024 | |
Reactor Cooling Infrastructure Improvements at the KSU TRIGA Reactor Facility | Kansas State University | $175,153.00 | The KSU TRIGA Mark II Research Reactor will replace and upgrade cooling system components to increase operational reliability. | Reactor Upgrades | FY2024 | |
Operations and Utilization Improvements at the PSU Breazeale Reactor | Pennsylvania State University | $177,409.00 | Project is a set of infrastructure upgrades focused on improving utilization, reliability, and safety at the PSU Breazeale Reactor. Included in the project are a new console uninterruptible power supply, an ultrapure water source for radiochemistry, a digital signal analyzer for the emergency operations center HPGe detector, a new ion exchange vessel for the primary water system, and new in-core and beamline detectors for the rapid and repeatable measurement of neutron flux. | Reactor Upgrades | FY2024 | |
Reactor Effluent Analysis Instrumentation for Rhode Island Nuclear Science Center | Rhode Island Nuclear Science Center | $124,615.00 | The proposed project is to acquire a complete, new gamma spectroscopy system. | Reactor Upgrades | FY2024 | |
Linear Power Safety Channel Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $598,075.00 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace the 2 existing Linear Power monitoring Safety Channels amplifiers. | Reactor Upgrades | FY2024 | |
MURR Facility Access Control Upgrade | University of Missouri, Columbia | $378,255.00 | Proposal is to acquire hardware and software necessary to upgrade the MU Research ReactorÕs facility access control system to a more secure system to maintain facility protection and to meet increased demands from faculty and student researchers authorized to use various areas of the MURR facility. | Reactor Upgrades | FY2024 | |
Priority hardware replacement for the AGN-201M reactor at the University of New Mexico | University of New Mexico | $437,995.00 | The proposed effort will replace aging and degraded hardware in the UNM AGN-201M nuclear reactor, including original power supplies and reactor safety logic systems, improving reactor safety and reliability. | Reactor Upgrades | FY2024 | |
Continuous Air Monitor and Source Range Detection Upgrade for the University of Utah TRIGA Reactor | University of Utah | $96,440.00 | The objective of this proposal is to increase operational reliability for UUTR operations by providing redundancy for aging equipment necessary for reactor operation. | Reactor Upgrades | FY2024 | |
Infrastructure Enhancements in Support of Safety and Operational Reliability at the WSU TRIGA Reactor | Washington State University | $365,195.00 | Projects aim to replace the 62-year old obsolete overhead crane and add an underwater pool illumination system. Both are used in support of reactor maintenance, fuel inspections and movement, teaching, training, and research activities at the WSU Nuclear Science Center 1 MW TRIGA reactor. | Reactor Upgrades | FY2024 | |
High Tempurature Thermal Diffusivity Equipment for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $136,000 | Project seeks to upgrade the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) post-irradiation examination (PIE) facilities to better complement the irradiation capabilities and broaden our role as a Nuclear Science User Facilities (NSUF) partner. Our eventual goal is to enable the MITR to provide full irradiation and sample analysis capabilities, from the start to the end of NSUF projects. | General Scientific Infrastructure | FY2023 | |
High-speed X-ray Imaging System Under a Chemically Protected Environment for Advanced High-temperature Non-Water-Cooled Reactor Experiments | Pennsylvania State University | $326,898 | Pennsylvania State University seeks a high-speed X-ray imaging system under a chemically controlled atmosphere to study high-temperature advanced reactor coolants and the materials-environment interactions. The capability of imaging low radioactive liquids and solids using a high-energy X-ray beam, at a very high imaging rate, and under a chemically protective environment is currently not available in the Nuclear Energy Infrastructure Database. | General Scientific Infrastructure | FY2023 | |
Hot Isotatic Pressing (HIP) for Nuclear Fuels and Structural Materials | Purdue University | $258,750 | Purdue University seeks to expand the Nuclear Science User Facilities (NSUF) capabilities to include hot isostatic pressing (HIP) equipment to fabricate, densify, and/or process nuclear structural materials, nuclear fuels, radioactive waste, and radiation detectors. | General Scientific Infrastructure | FY2023 | |
A Molten Salt Training and Research Loop for Advanced Nuclear Reactors | North Carolina State University | $250,000 | North Carolina State University will procure a molten salt pumped loop and glove box for both cutting-edge R&D and laboratory training for upper-division undergraduate and graduate students. Future users of the salt loop will investigate a diversity of research topics that include fluid characterization, material corrosion, thermos-hydraulics, sensor development, and more. | General Scientific Infrastructure | FY2023 | |
Establishment of Hot Cell Irradiated Materials Micro and Nano-Mechanical Testing at the University of New Mexico | University of New Mexico | $209,305 | Project seeks to enhance the materials characterization capabilities at the University of New Mexico hot cell facilities through acquisition of a microhardness tester, an in situ SEM picoindenter, and a digital image correlation system. | General Scientific Infrastructure | FY2023 | |
Establishment of a Salt Characterization Facility at UNR | University of Nevada, Reno | $180,779 | Project seeks to obtain accessories for existing characterization tools to determine the composition of halide salts. Specifically, a double glovebox, an ELTRA combustion analyzer and a titrator. This facility along with existing characterization infrastructure at UNR will allow for complete characterization of the salt composition. | General Scientific Infrastructure | FY2023 | |
Develop a Thermophysical Lab for Environment-Sensitive Nuclear Materials at Oregon State Univeristy | Oregon State University | $249,885 | Project aims to enhance Oregon State University (OSU)Õs capabilities to handle and comprehensively characterize air- and water-sensitive nuclear materials, including (fuel-bearing) molten salts, liquid and solid metallic fuels, etc., by developing a THERmophysical and cheMical lab for envirOnment-sensitive NUCLEar mAteRials (The Thermonuclear lab). | General Scientific Infrastructure | FY2023 | |
Establishing a Nuclear Chemistry Core Facility at the University of Wyoming | University of Wyoming | $300,000 | University of Wyoming seeks to secure the necessary infrastructure to establish a nuclear chemistry core facility which will serve the research and teaching missions of the University of Wyoming. | General Scientific Infrastructure | FY2023 | |
An Extreme-Temperature Load Frame for Reduced Length Scale Experimentation to Support Nuclear Materials Research and Education | University of Utah | $244,942 | University of Utah seeks to acquire a turn-key Psylotech µTS testing system and furnace chambers to enable elevated temperature testing (up to 1600¡C) of reduced length scale specimens (dimensions from 10 µm to 10mm). | General Scientific Infrastructure | FY2023 | |
Advanced SMR Simulator to Reinforce Nuclear Engineering Infrastructure at Rensselaer | Rensselaer Polytechnic Institute | $250,000 | Project seeks to strengthen the research and educational capabilities of the Nuclear Engineering Program at RPI (developing the NuScale Energy Exploration (E2) Center and a digital control room). | General Scientific Infrastructure | FY2023 | |
NuScale SMR Energy Exploration Center for UNLV Engineering Program Education and Research | University of Nevada, Las Vegas | $250,000 | Project seeks to enhance the teaching and research capabilities of the Nuclear Engineering Program at the University of Nevada Las Vegas (UNLV). The project aims to acquire the NuScale Energy Exploration (E2) Center, a state-of-the-art full scope reactor simulator based on the NuScale small modular reactor (SMR). | General Scientific Infrastructure | FY2023 | |
Upgrades to the Maryland University Training Reactor Cooling and Neutron Activation Analysis Systems for Enhanced Operational Reliability and Capability | University of Maryland, College Park | $1,465,001 | University of Maryland, College Park will increase and restore the safety, operational availability, and experimental capabilities of the Maryland University Training Reactor. A complete overhaul of the Primary and Secondary Coolant Systems will enable the reactor to operate continuously at its full licensed power. The acquisition of a microbalance and fume hood will improve the sensitivities of the neutron activation analysis program. | Reactor Upgrades | FY2023 | |
Replacement if the Oregon State TRIGA Reactor Ventilation System | Oregon State University | $416,405 | Oregon State University will increase the reliability and safety of the operational condition of the Oregon State TRIGA¨ Reactor ventilation system. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research as well as material science. | Reactor Upgrades | FY2023 | |
Replacement and Upgrade of the Reactor Secondary Cooling Loop at the WSU 1 MW TRIGA Reactor | Washington State University | $740,121 | Wasington State University will enhance the continued operational reliability and efficiency of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by replacing and simultaneously upgrading the research reactor cooling system secondary loop with equipment sized appropriately for heat removal and operation during summer heat. | Reactor Upgrades | FY2023 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Cruicial Cooling System Components | The Ohio State University | $87,158 | The Ohio State University Research Reactor will update replacement/spare custom facility components to enhance the institutionsÕ availability to perform R&D. | Reactor Upgrades | FY2023 | |
Procurement of Spare Digital Recorders, Replacement Portal Monitor, and Pool Lighting System at the Missouri S&T Reactor | Missouri University of Science and Technology | $25,865 | Missouri University of Science and Technology will procure spare digital recorders for the MSTR control console, a new portal monitor, and a pool lighting system. These improvements will bolster facility safety and reliability. | Reactor Upgrades | FY2023 | |
Radiological Safety and Operational Reliability Enhancements at the Penn State Breazeale Reactor | Pennsylvania State University | $78,531 | Pennsylvania State University will purchase two Alpha/Beta Continuous Air Monitors (Mirion iCAM) to replace the several decades old AMS-3 units, two new hand, cuff, and foot surface contamination monitors, one for reactor bay and the other in the new reactor beam hall exit area, a spare control rod servo drive and motor mechanism. | Reactor Upgrades | FY2023 | |
University Research Reactor Upgrades Infrastructure Support for the MIT Research Reactor's Area Radiation Monitor System Upgrade | Massachusetts Institute of Technology | $898,769 | Massachusetts Institute of Technology will upgrade the reactor's area radiation monitor system to improve reactor safety, personnel safety and reactor radiological emergency preparedness by replacing and expanding the existing area radiation monitor system with updated technology and equipment. | Reactor Upgrades | FY2023 | |
Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor Phase II | Abilene Christian University | $292,770 | Abilene Christian University will provide $42,770 in cost match toÊexpand a new radioactive materials characterization capability in the Nuclear Energy eXperimental Testing (NEXT) Laboratory at Abilene Christian University. The new capability will provide real-time in situ characterization of molecular species in forced-flow molten salt systems using UV-Vis-IR spectroscopy and electrochemistry of salt and mass spectrometry of the off gas in a new radiological lab (>5mr/hr@30cm). | General Scientific Infrastructure | FY2022 | |
Advanced Raman Spectroscopy for Characterization of f-Element Coordination Chemistry and Multiphasic Nuclear Waste Forms | Clemson University | $244,767 | This project seeks to purchase a new Raman microscope for student and faculty research at Clemson University. The new Raman microscope will be dedicated to examination of the chemistry and structure of radioactive materials. | General Scientific Infrastructure | FY2022 | |
Microscale PIE Tools for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $156,249 | The MIT Nuclear Reactor Lab (NRL) seeks to purchase a Flash Differential Scanning Calorimeter, to enable a greatly increased scientific output from all materials used in the MIT reactor and throughout the NSUF network. The FlashDSC-2 allows thermal analysis up to 1000C, enabling the direct measurement of Wigner energy (radiation defects) for defect reaction analysis and quantification, which has major implications for correlating radiation effects from neutrons and ions. | General Scientific Infrastructure | FY2022 | |
SMR Full Scope Simulator for Upgrading the Ohio State University Nuclear Engineering Program Research and Education Infrastructure | The Ohio State University | $275,000 | The Ohio State University will provide $25,000 inÊcost matchÊto enhance the educational and research capabilities of the Nuclear Engineering Program at The Ohio State University (OSU) by upgrading the infrastructure related to advanced reactor risk, reliability, safety and security characterization and improvement, and in support of its NSUF in the form of OSUÕs Nuclear Reactor Laboratory. Risk, reliability, safety and security characterization will be enhanced through acquiring and installing NuScale's full scope simulator. | General Scientific Infrastructure | FY2022 | |
Reactor Simulator and Digital Control Room to Create New Paradigms for Nuclear Engineering Education and Research | University of Illinois at Urbana-Champaign | $317,500 | The University of Illinois at Urbana-Champaign will provide $67,500 inÊcost match to enhance the educational and research missions of the Department of Nuclear, Plasma, and Radiological Engineering (NPRE), as well as the research mission of DOE-NE, this project aims to acquire a nuclear reactor simulator and a versatile, configurable, and extensible digital control room. This simulator and digital control room will be used in undergraduate and graduate course work, in K-12 outreach efforts, and for research in several areas of importance to DOE-NE. | General Scientific Infrastructure | FY2022 | |
Scientific Infrastructure Support for Post Irradiation Examination of Materials at MURR | University of Missouri, Columbia | $225,933 | This proposal requests funding for equipment that will establish a core of materials characterization capabilities at the University of Missouri Research Reactor Center (MURR), and includes a Raman spectroscopy system, a microhardness tester, a micro test stand, a microscope and a digital image correlation system. | General Scientific Infrastructure | FY2022 | |
High-Temperature Thermomechanical Characterization of Nuclear Materials | University of Pittsburgh | $565,573 | The University of Pittsburgh will provide $315,574 inÊcost match toÊpurchase a Gleeble system equipped with extreme environmental capabilities to strengthen core nuclear capability in strategic thrust areas in fuel performance, additive manufacturing of nuclear components, and reactor materials at the University of Pittsburgh. | General Scientific Infrastructure | FY2022 | |
Construction of a Flexible Fast Flux Facility for Cross Section Measurement, Benchmarking, and Education | University of Tennessee at Knoxville | $319,306 | The University of Tennessee at Knoxville will provide $69,306 in cost matchÊto construct, license and operate a facility that can be used to measure nuclear physics properties in specific fast reactor flux specta. This project will deliver to the nation a Fast Flux Facility (FFF) that supports a variety of fast reactor designs including sodium, lead, and salt; through improved cross sections and neutronics codes for advanced reactor design and licensing. | General Scientific Infrastructure | FY2022 | |
Procurement of Spare Parts for Instrumentation Channels, Electronics Test Equipment, and Power Uprate Study at the Missouri S&T Reactor | Missouri University of Science and Technology | $172,157 | This project has three objectives: 1) to procure spare and replacement parts needed to maintain the reactorÕs safety and control systems, 2) to develop a suite of electronics test equipment that will provide researchers with the ability to study the performance of electronics under irradiation, and 3) to perform computational analyses needed as part of the process of requesting a power uprate. | Reactor Upgrades | FY2022 | |
Enhanced Safety, Operations, and Utilization Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $130,100 | The objective of this proposal is to provide the PULSTAR with essential safety, plant status monitoring, utilization, and radiation protection infrastructure upgrades that will ensure its continued safe and efficient operation currently and at 2-MWth. This infrastructure upgrade allows the facility to continue to meet the increasing needs of PULSTAR users, enhancing user experience, expansion into new facilities, and supports the institutional and national missions. | Reactor Upgrades | FY2022 | |
Enhancement of radiation safety, security, and research infrastructure at newly constructed Neutron Beam Hall at the Penn State Breazeale Nuclear Reactor | Pennsylvania State University | $364,240 | In this application, we seek funds for enhancement of radiation safety and security infrastructure for our new expanded beam hall, a triple neutron beam catcher for new cold neutron beamline, and a neutron beam cave for the beam bender and neutron chopper sections of the extended beam line for the SANS facility. The funds requested for this application will enable us to utilize the expanded beam hall safely and efficiently. | Reactor Upgrades | FY2022 | |
Reed College Reactor N.I. Power Monitoring Channels | Reed College | $543,400 | Reed College requests funding to primarily secure and secondarily extend the life of the safety system functions with new power monitoring channels at the console. Obsolete safety-critical signal conditioning of old channels puts the reactor at risk of indeterminate shut-down if not replaced by modern, well-supported technology. | Reactor Upgrades | FY2022 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Crucial Reactor Pool Components | The Ohio State University | $111,354 | The Ohio State University Research Reactor depends upon many old, custom components in and around the reactor pool for which there are no replacements. Failure of any of these would likely result in an extended downtime. We are requesting funding to obtain replacement/spare custom facility components to Òenhance the institutionsÕ availability to perform R&D that is relevant to DOE-NEÕs missionÓ by precluding a such a failure. | Reactor Upgrades | FY2022 | |
University of Florida Training Reactor Gaseous Effluent Monitoring in Support of Reactor Operations and Research Activities | University of Florida | $55,720 | We propose the procurement of new gas effluent monitoring systems that will enable the UFTR to offer an increased suite of capabilities including plume monitoring and source term-tracking. The proposed system redundancy will enable a significant improvement of reliability and availability. | Reactor Upgrades | FY2022 | |
Core Modifications to Ensure the Continued Safe and Reliable Operation of the Maryland University Training Reactor | University of Maryland, College Park | $171,956 | During the installation of lightly irradiated fuel bundles, reactor operators discovered that these new fuel bundles would not fit into the grid plate. It was determined that the original bundles were installed in the wrong orientation in 1974. To install the lightly irradiated fuel bundles, reactor operators will need to unload the current core and disassemble all fuel bundles for inspection. The fuel will then be re-assembled with new end adapters for installation in the correct orientation. | Reactor Upgrades | FY2022 | |
Operations and Radiation Safety Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $156,496 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace aging components associated with the area radiation monitoring system and the reactor instrumentation and control systems. In addition, a broad energy germanium detector will be acquired to provide radiological monitoring capabilities at the reactor facility. These acquisitions will provide reliability of reactor operations and improve radiation safety for staff, faculty, and students working at the reactor. | Reactor Upgrades | FY2022 | |
Replacement and Upgrades to MURRÕs Facility Electrical Transformer and Reactor Primary Coolant Pumps and Motors | University of Missouri, Columbia | $170,775 | Replacement of primary coolant pumps and a facility electrical transformer is a high priority, critically needed enhancement for the MURR Center in order to support academic programs at the University of Missouri (MU) and partnering schools, and maintain the facilityÕs ability to perform research supporting DOE-NEÕs research mission. | Reactor Upgrades | FY2022 | |
Upgrading the UT Austin Nuclear Engineering Teaching Laboratory Reactor Console and Instrumentation to Advance Nuclear Science and Engineering Research and Education | University of Texas at Austin | $792,101 | The objective of this project is to replace the original General Atomics (GA) integrated digital control and instrumentation system for the TRIGA Mark II nuclear reactor at the Nuclear Engineering Teaching Laboratory (NETL) of The University of Texas at Austin (UT) with a modern, reliable, enhanced and capable system to increase useable reactor power, eliminate the risk for catastrophic failure, and improve reactor safety. | Reactor Upgrades | FY2022 | |
Radiation Tolerant Inspection Camera at the University of Wisconsin Nuclear Reactor (UWNR) | University of Wisconsin-Madison | $55,495 | The specific objective of this proposal is to enhance safety and ensure regulatory compliance at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM) through the acquisition of a radiation tolerant underwater camera with pan, tilt, zoom (PTZ) capabilities. | Reactor Upgrades | FY2022 | |
Enhancing the Operational Reliability of the TRIGA Reactor at Washington State University Utilizing Back-Up Reactor Core Nuclear Instrumentation | Washington State University | $104,976 | The goal of this project is to enhance the continued operational reliability of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by procuring spare reactor power detectors to replace aging ex-core detectors and fabricating detector housings. | Reactor Upgrades | FY2022 | |
NEUP Project 21-25190: Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor | Abilene Christian University | $367,793 | _This project supports establishing new and unique real-time direct chemical analysis capabilities for molten salt systems, specifically adding Raman and gamma spectroscopies to the Abilene Christian University (ACU), the Nuclear Energy eXperimental Testing (NEXT) Lab molten salt and materials characterization tools._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25206: High-Speed Terahertz Scanning System for Additively Manufactured Ceramic Materials and Composites for TCR Core Materials | Alfred University | $90,000 | _This project supports procurement and installation of a custom-made high-speed terahertz (THz) dual scanner system that will demonstrate non-destructive imaging of AM ceramic materials and composites for TCR core application._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25188: High-Efficiency Electrochemical Test Facility for Corrosion and Hydrodynamic Analysis in Molten Salts | Brigham Young University | $180,269 | _This project advocates the purchase of rotating cylinder electrode (RCE) to provide high throughput testing of materials and measurement of physical properties in molten salts. The proposal suggests that the purchase will yield an "Intermediate" advance on current methods for interrogating corrosion in molten salts._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25233: CSU Accurate Neutron Dosimetry Research and Teaching Infrastructure | Colorado State University | $39,500 | _This project supports procuring a new and well-characterized set of neutron detectors (Bonner Spheres) and the ATTILA4MC computer code to provide additional neutron detection capacity and neutron spectroscopy capabilities. Primary utilization is to enhance student education and training in the area of neutron detection and dosimetry._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25109: Interrogating f-element-ligand Interactions by X-ray Absorption Spectroscopy | Florida International University | $302,826 | _This project promotes the purchase of analytical instruments, including an X-ray absorption spectrometer and a probe for NMR spectrometer, to enhance radiochemistry research._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25197: Ultrafast elemental depth profiling to enable high-throughput characterization of nuclear materials and fuels | Missouri University of Science and Technology | $304,724 | _This project will support the purchase of a pulsed radio frequency glow discharge optical emission spectrometer (GDOES), with the capability of ultrafast elemental depth profiling. Potential unique capability as a tool for high throughput compositional characterization of nuclear materials and fuels._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25130: High Resolution Scanning Acoustic Microscopy System for High Throughput Characterization of Materials and Nuclear fuels | North Carolina State University | $290,000 | _This project requests funding for the purchase of a state-of-the-art high resolution scanning acoustic microscopy system for in high throughput characterization of nuclear fuels, sensor materials, cladding materials, reactor structural materials and 3D printed components. This novel non-destructive characterization capability will enhance capabilities at a current NSUF partner institution providing a unique offering within NSUF NEID._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25148: Dedicated Infrastructure for In Situ Characterization of Structural Materials | State University of New York, Stony Brook | $204,327 | _This project supports procurement of a suite of equipment dedicated to characterizing radioactive materials. Microscale specimen preparation and property testing equipment is an area of significant need within the nuclear research complex._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25122: Infrastructure upgrades to the Texas A&M University Accelerator Laboratory | Texas A&M University | $246,418 | _This project will provide support to enhance Texas A&M Univ. Accelerator Laboratory, specifically (1) to increase the proton irradiation efficiency by one order of magnitude; (2) to offer the new capability of simultaneous proton ion irradiation and corrosion testing in molten salts related to molten salt reactor (MSR) applications; and (3) to develop the new capability of in-situ characterization of specimen thickness and elemental distributions during corrosion testing. The project will lead to a capability that is not duplicated at other facilities._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25126: Development of a Rapid Chemical Assessment Capability for In-Situ TEM Ion Irradiations | University of Michigan | $350,000 | _This project will support the acquisition and deployment of a Gatan GIF (Gatan Imaging Filter) Continuum ER system in the Michigan Ion Beam Laboratory (MIBL) ThermoFisher Tecnai TF30 scanning/transmission electron microscope (S/TEM) that is augmented to allow in situ dual ion beam irradiation. This purchase will result in a significant enhancement of the characterization capabilities of MIBL system, that will result in high-throughput experimental workflows including in-situ TEM ion irradiations._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25140: Neutron irradiation facility at the NSL | University of Notre Dame | _This project supports development of a neutron irradiation station (NIS) at the Nuclear Science Laboratory (NSL) at the University of Notre Dame (UND) providing a monoenergetic flux of neutrons in the energy range of a few keV to a few MeV produced via (p,n) or (a,n) reactions on low-Z target materials, such as Li and Be. Significant utilization is expected within both educational and R&D missions, with R&D utilization expanding from nuclear data to radiation effects studies. The capability will be hosted by NSF-supported facility with a significant postgraduate "hands-on" education program._ | General Scientific Infrastructure | FY2021 | ||
NEUP Project 21-25232: A dedicated facility for direct visualization of bubble dynamics in molten salts | University of Puerto Rico at Mayagez | $250,000 | _The proposed facility in this projects enables experiments to correlate bubbles and bubbles clusters size, dynamics, composition, terminal velocity, temperature, environmental pressure and composition and purity with their aerosol production at bursting, at temperatures from operating conditions up to 1000 ¡C. Unique capability for molten salts systems._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25238: A High-Temperature Mechanical Testing Platform for Accelerated, Parallelized, and Miniaturized Materials Qualification | University of Texas at El Paso | $250,000 | _This project requests funds forÊthe acquisition of an Instron 8862 servo-electric testing system with intelligent furnace control capable of high temperature quasi-static (tensile, creep, stress relaxation, etc.) and dynamic testing (low cycle fatigue, creep-fatigue, etc.)._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25241: Fuel Fabrication Line for Advanced Reactor Fuel Research, Development and Testing | University of Texas at San Antonio | $286,344 | _This project will support the fabrication and testing of advanced nuclear fuels and materials, specifically the development of the uranium-bearing compounds, alloys, and composites. Specific focus is the synthesis of novel samples of relevant fuel compounds, like uranium nitride (UN) and the fabrication of dense, uniform geometries (pellets) of these samples as well as fuel compounds such as namely uranium silicides, carbides, composite forms of these fuels, and metallic fuel alloys/ compounds._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25150: Instrumentation for Enhanced Safety, Utilization, and Operations Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $341,760 | _This project will upgrade and enhance the safety, operations, and utilization infrastructure at the PULSTAR reactor of North Carolina State University (NCSU); installation of modern reactor console instrumentation to support the continued safe and reliable operation of the PULSTAR reactor and installation of comprehensive and facility wide radiation protection and moisture/temperature sensor systems._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25227: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Ensuring Continued Operational Capacity | Oregon State University | $555,416 | This project will upgrade necessary spare items to ensure sustained operation without lengthy unplanned outages for the Oregon State University Mk II Oregon State TRIGA¨ Reactor (OSTR) at the Oregon State University Radiation Center._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25222: High-Temperature Molten Salt Irradiation and Examination Capability for the Penn State Breazeale Reactor | Pennsylvania State University | $179,715 | _This project will build and install a permanent, high-temperature, molten salt neutron irradiation and post-irradiation analysis capability at the Penn State Breazeale Reactor (PSBR)._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25228: Reed Research Reactor Compensated Ion Chamber Replacement | Reed College | $140,000 | _This project will improve reliability of the reactor program at Reed College byÊpurchasingÊa spare Compensated Ion Chamber (CIC) to monitor the reactor power. The CIC allows the reactor operator to monitor and control the reactor power._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25112: Enhancement of Availability of The Ohio State University Research Reactor for Supporting Research and Education | The Ohio State University | $73,539 | This project wil support replacement parts for essential OSU Research Reactor (OSURR) control-room equipment that has been in continuous service for decades; custom reactor protection system (RPS) modules for which the lab has no spares. | Reactor Upgrades | FY2021 | |
NEUP Project 21-25142: Safety and Reliability Enhancements for the UC Irvine TRIGA Reactor | University of California, Irvine | $74,950 | _This project will increase the reliability of the TRIGA reactor instrumentation and control systems, increase the radiation safety for experiments while expanding research capabilities, and improve the fuel surveillance and management program._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25213: Acquisition of an Automated Pneumatic Sample Transfer System for Neutron Irradiation at the University of Florida Training Reactor | University of Florida | $282,000 | _The University of Florida will acquire an automated pneumatic sample transfer system to be used for moving samples into the University of Florida Training Reactor for irradiation and transferring the samples to laboratories for experimental use._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25202: Advancing Radiation Detection Education at the Maryland University Training Reactor | University of Maryland, College Park | $208,140 | _This project will modernize the radiation safety equipment and radiation detection capabilities at the Maryland University Training Reactor._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25132: Development of Neutron Tomography at the University of Wisconsin Nuclear Reactor | University of Wisconsin-Madison | $222,294 | _This proposal will enhance nuclear energy-related research and development at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM). Proposal seeks to enhance the neutron radiography capabilities at the reactor, by acquiring a high-resolution detector, rotation stage, visualization software and a high-performance computer._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25215: Upgrade to the 1 MW TRIGA Research Reactor Pool Liner at WSU | Washington State University | $302,657 | _This project will enhance the safety, performance, and continued operational reliability of the WSU NSC 1.0 MW TRIGA conversion research reactor: 1) Restore the reactor tank concrete, which is in much need of repair, and 2) Replace the epoxy concrete tank liner with a modern, robust epoxy liner that has already been successfully utilized and in service at other reactor facilities._ | Reactor Upgrades | FY2021 | |
NEUP Project 20-21610: Enhancing Mechanical Testing Capabilities to Support High-throughput Nuclear Material Development | Auburn University | $210,398 | _The project seeks to enhance the advanced mechanical testing capabilities at Auburn University through the aquisition of two key instruments to further support its existing nuclear research and education programs, as well as advanced manufacturing. An integrated micro- and nano-indentation platform with high-temperature capability will be acquired to cover grain scale high-throughput mechanical evaluation. A digital image correlation system will also be acquired to develop a high-throughput macroscale mechanical testing procedure of the compositionally and microstructurally gradient tensile specimens to maximize neutron test efficiency. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19328: A 3D Metal Printer to Enable Innovations in Nuclear Materials and Sensors | Boise State University | $319,941 | _This project will establish the capability to additively manufacture metallic materials at the Center for Advanced Energy Studies and within the NSUF network. This capability will help advance cross-cutting research on additive manufacturing of nuclear materials and in-core sensors and will enable new educational opportunities to attract and train high-quality students for the next generation nuclear energy workforce. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21612: High-Speed Thermogravimetry Equipped with Mass Spectrometry for Thermodynamic and Kinetic Study of Nuclear Energy Materials | Clemson University | $228,237 | _The project will allow for the acquisition of a state-of-the-art thermal analysis infrastructure of a high-speed thermogravimetry equipped with online mass spectrometry, allowing for high-speed temperature variation and instantaneous, simultaneous, and accurate quantification of exit species. The rapid and accurate thermodynamic and kinetic study of nuclear energy materials and processes will result in a robust thermodynamic characterization hub for nuclear energy materials and processes. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21572: Development of an In-Situ Testing Laboratory for Research and Education of Very High Temperature Reactor Materials | North Carolina State University | $261,175 | _This project will allow for the development of a unique in-situ testing laboratory (ISTL) through acquisition of a scanning electron microscope (SEM) and installation of a miniature thermomechanical fatigue testing system inside the SEM. The proposed ISTL will give the research community unprecedented capability to perform nuclear research, educate next generation scientists, and develop a future NSUF program in studying real-time microstructure evolution of very high temperature reactor materials under realistic loading conditions. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21567: Development of a High Throughput Nuclear Materials Synthesis Laboratory | University of Michigan | $166,560 | This project will allow for the acquisition of equipment to establish rapid materials consolidation and modification to complement the already established facilities at the University of Michigan, including the world-class Michigan Ion Beam Laboratory (MIBL). Coupling both MIBL and the proposed facility in a single research effort will result in a new end-to-end high throughput nuclear materials discovery capability in a single institution. The resulting increase in capability will serve all nuclear energy supporting universities, national laboratories, and industry. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21628: Infrastructure Support for In-situ Transmission Electron Microscopy Examination of Structure, Composition and Defect Evolution of Irradiated Structural Materials at University of Nevada, Reno | University of Nevada, Reno | $343,147 | _The project will establish a new, in-situ, nano-scaled structure, composition and defects evolution examination infrastructure system for irradiated structural materials using the Hysitron PI-95 Transmission Electron Microscope (TEM) PicoIndenter, which is designed to work in conjunction with a state-of-art high resolution TEM. This system will allow in-situ characterization under mechanical strain in a variety of irradiated materials at the University of Nevada, Reno. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21603: Establishment of Remote Control High Temperature Mechanical Testing Facility in a Hot Cell at The University of New Mexico | University of New Mexico | $250,000 | _This project will establish a high temperature mechanical testing capability within the hot cell of Nuclear Engineering Department at the University of New Mexico that can be operated using the existing manipulators, allowing remote operation for testing radioactive specimens. Combined with the existing infrastructure, this capability will allow establishment ofÊmicrostructure-mechanical property relations in structural materials for nuclear applications. The facility will also help educate and train the next generation of nuclear scientists, engineers, and policy makers. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21614: High Temperature Thermophysical Properties of Nuclear Fuels and Materials | University of Pittsburgh | $300,000 | _This project will allow the acquisition of key equipment to strengthen the core nuclear capability in the strategic thrust area of instrumentation and measurements at the University of Pittsburgh. This will be accomplished through the purchase of a laser flash analyzer and a thermal mechanical analyzer as a tool suite for complete thermophysical property information, and to fill an infrastructure gap to enhance nuclear research and education. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21624: Ex-situ and In-situ Molten Salt Chemical Analysis Capabilities for the Development of Materials in Molten Salt Environments | University of Wisconsin-Madison | $263,000 | _The project will allow for the addition of a state-of-the-art laser induced breakdown spectroscopy system, which will complement the University of Wisconsin-Madison Nuclear Engineering program's molten salt researchÊcapabilitiesÊwith an ex-situ and in-situ chemical analysis characterization tool that can detect all impurities in the salt, even low-Z elements. With these additions, higher throughput analysis of alloys and salts for molten salt reactor applications would be developed and would accelerate material discoveries. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21609: A Customized Creep Frame to Enable High-Throughput Characterization of Creep Mechanism Maps | Utah State University | $160,000 | _This project will allow for the acquisition and installation of a custom creep testing frame with an environmental chamber which has been modified with windows to support camera-based strain measurements. The measurements obtained using the equipment will be used to study heterogeneous creep strain accumulation in nuclear materials, with applications geared towards light water reactor sustainability, accident tolerant fuels, and other important materials-related challenges in nuclear science and engineering._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19067: Laboratory-based High-Resolution X-ray Absorption and Emission Spectroscopy for Nuclear Science and Radiochemistry Research and Education | Washington State University | $287,450 | _This project will allow for the acquisition of a radiological laboratory-based high-resolution hard X-ray spectrometer that can perform both X-ray absorption spectroscopy and X-ray emission spectroscopy. This instrument will greatly upgrade the technical capability of the nuclear reactor facility at Washington State University (WSU) for nuclear-related and radiochemical research and teaching, allowing for enhancement of WSUÕs capacity to attract high quality students interested in nuclear science._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-20215: A New Control Rod Drive Mechanism Design for the ISU AGN-201M Reactor | Idaho State University | $59,262 | _The existing control rod drive mechanism of the Idaho State University's Aerojet General Nucleonics model 201-Modified reactor will be replaced with a new, reliable, alternative design to reduce the overall complexity and probability of failure and improve the overall reliability and safety of the reactor. With proper material selection and improved structural design, the new drives are lighter, with little to no change in structural integrity, and eliminate the binding scenarios by using a single lead screw and implementing additional guide rods. The new design ensures the reactorÕs long-term viability for educational and research activities and increases the reliability and safety of operation. | Reactor Upgrades | FY2020 | |
NEUP Project 20-20186: University Research Reactor Upgrades Infrastructure Support for the MIT Research ReactorÕs Normal and Emergency Electrical Power Supply Systems | Massachusetts Institute of Technology | $537,818 | _The existing emergency electrical power battery system at the Massachusetts Institute of Technology Research Reactor will be updated with new technology and equipment, enhancing emergency preparedness of the reactor facility by restoring the post-shutdown emergency power supply for at least eight hours. In addition, the two existing reactor motor control centers that provide normal electrical power to the reactor's main cooling pumps, building isolation equipment, instrumentation, and other necessary operational and safety equipment, will be updated to improve equipment reliability and enhance personnel electrical safety by using components that meet modern standards. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21634: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Increasing Material Science Capability | Oregon State University | $118,020 | _The TRIGA¨ Mk II Oregon State TRIGA¨ ReactorÊprogram will purchaseÊa liquid scintillation counter in order to increase utilization of the facility. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research, as well as materials science at Oregon State University and development relevant to the DOE._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21589: Underground Waste Storage Tanks Removal and Installation of New Above Ground Waste Storage Tanks and Waste Evaporator Pit at the Radiation Science and Engineering Center | Pennsylvania State University | $306,744 | _In order for the necessary construction of a new beam ball at the Penn State Breazeale Reactor, the antiquated underground storage tanks will be replaced with above ground water storage tanks within the expanded neutron beam hall space. This effort will allow progress to continue toward the goal of massively expanding the number of neutron experiment stations available to the Radiation Science and Engineering Center users._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21633: PUR-1 Water Processing and Cooling System Upgrade | Purdue University | $36,000 | _The heat exchanger and associated water process system of the Purdue University Reactor Number One will be replaced, in order to ensure the reactor's safe and continuous operation. This replacement will allow the Purdue UniversityÊReactorÊNumber One to reject 10 kW of reactor heat with nominal excess capacity and achieve steady state operations at the fully licensed power level with enhanced capacity, reliability, and safety. With this replacement, the facility will be able to access fluence required for meaningful research applications. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21571: Reactor Safety Control Component Upgrade | Rhode Island Nuclear Science Center | $477,000 | _The Rhode Island Nuclear Science Center's last remaining original components in the reactor controls system will be upgraded and the remaining components will be integrated into a configuration that not only enhances the reactor operatorÕs ability to operate the reactor safely, but also improves reliability, maintenance capability and longevity. By replacing the last of the vacuum tube based technology from the original installation with the Reactor Safety Control Components, the long term viability of the research reactor to support ongoing and future research projects and educational endeavors will be improved. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21621: Equipment Upgrades at University of Massachusetts Lowell Research Reactor (UMLRR) to enable neutron-induced reaction research. | University of Massachusetts, Lowell | $129,788 | _Equipment and the experimental infrastructure at the University of Massachusetts-Lowell Research Reactor will be upgraded, in order to ensure the safe and efficient operation of the reactor during the next 20 or more years of operations. A new control console that will ensure the safe and efficient operation, as well as upgrades to the experimental infrastructure of the facility, during the next 20 or more years of operations. The proposed control system upgrades will continue to enhance this ongoing educational development pathway._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21601: University of Missouri Research Reactor Beryllium Reflector Replacement | University of Missouri, Columbia | $585,013 | _The University of Missouri-Columbia Research Reactor's beryllium reflector will be replaced, due to the irradiation induced swelling from the neutron fluence and thermal induced tensile stress from radiation heating of the beryllium material. Replacing the reactorÕs beryllium reflector is a high priority and critical upgrade necessary for the continued safe and reliable operations of the reactor to support nuclear science and engineering students and faculty, as well as the facilityÕs extensive infrastructure supporting the research needs of the nuclear industry. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21593: Reactor Cooling System Upgrade for the University of Utah TRIGA Reactor | University of Utah | $487,387 | The cooling system of the Universty of Utah TRIGA reactor (UUTR) will be replaced to enhance performance and utility by allowing for the reactor to run for much longer periods at full power, increasing safety and operational reliability. Converting the cooling mechanism from a passive system to an active system will increase the cooling capacity by up to 1 MW thermal energy. This will allow for the UUTR to have much longer runtimes and higher daily neutron/gamma fluence, which will enhance the capability for a wide range of nuclear research and development efforts. | Reactor Upgrades | FY2020 |
FY 2023 Integrated Research Project Awards
The Department of Energy is awarding nearly $6 million for three Integrated Research Projects (IRPs), which address well-defined but highly complex technical issues impacting key Office of Nuclear Energy (NE) mission objectives. IRPs are multi-million-dollar, three-year projects executed by university-led consortiums that typically include multiple universities, industry, national laboratories, and international research entities. IRPs comprise a significant element of DOE’s innovative nuclear research objectives and illustrate NE’s strategy to pursue R&D solutions most directly relevant to NE’s mission.
IRP award recipients are listed below.
Title | Institution | Estimated Funding | Abstract | Project Description | Project Type | Fiscal Year |
---|---|---|---|---|---|---|
Spark plasma sintering for nuclear fuel and alloy fabrication at Massachusetts Institute of Technology | Massachusetts Institute of Technology | $290,875.00 | Massachusetts Institute of Technology will provide $40,875 cost share to acquire a state-of-the-art spark plasma sintering (SPS) set up to enhance educational and research capabilities in high throughput nuclear fuels, sensor materials, cladding materials, and reactor structural materials fabrication. Total estimated project cost $331,750. | General Scientific Infrastructure | FY2024 | |
High-Throughput Serial Sectioning of Nuclear Fuels, Materials, and Sensors | Purdue University | $299,869.00 | Purdue University will provide $49,869 cost share to acquire an automated, high-throughput serial sectioning instrument for three-dimensional characterization of nuclear fuels, materials, and sensors. Total estimated projected cost $349,738. | General Scientific Infrastructure | FY2024 | |
Simulating Nuclear Radiation Environments and Testing Capabilities for Electronics | University of Central Florida | $249,970.00 | Objective of the proposal is to develop an advanced capability for simulating and studying extreme environments with elevated radiation dose and high temperature conditions similar to that in nuclear facilities. | General Scientific Infrastructure | FY2024 | |
Development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Testing | University of Illinois at Urbana-Champaign | $263,806.00 | University of Illinois at Urbana-Champaign will provide $13,806 cost share for the development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Research. Total estimated project cost $277,612. | General Scientific Infrastructure | FY2024 | |
A High Current, High Energy Helium Beamline for Accelerated Nuclear Materials Development | University of Michigan | $409,826.00 | University of Michigan will provide $159,826 cost share to acquire and deploy a new high current helium ion source and corresponding beamline components at the Michigan Ion Beam Laboratory (MIBL) to form a new high current, high energy helium beamline to enable nuclear materials studies including in-situ helium effects in stressed specimen configurations. | General Scientific Infrastructure | FY2024 | |
Commissioning of an easyXAFS to Enable Understanding of Short Order Structure in Nuclear Materials | University of Nevada, Reno | $292,085.00 | University of Nevada, Reno will provide $42,085 cost share to purchase an easyXFAS system, a high resolution, hard X-ray monochromator for X-ray absorption spectroscopy (XAS) measurements. This instrument provides signal strengths approaching those from synchrotron-based XAS systems, and would enable easy analysis of radioactive samples and rapid iterations on experiments. Up to 33% of the time will be dedicated for external users. Innovative laboratory modules will be created showcasing the use of the facility. Total estimated project cost $334,170. | General Scientific Infrastructure | FY2024 | |
In situ Characterization of Transient Radioactive Compounds | University of Notre Dame | $247,056.00 | Project will add facilities at Notre Dame Radiation Laboratory for the handling of radioactive samples. | General Scientific Infrastructure | FY2024 | |
In situ ion irradiation testing facilities for the investigation of nuclear materials under mechanical and thermal extremes | University of Wisconsin-Madison | $339,671.00 | University of Wisconsin-Madison will provide $89,671 cost share and will establish two novel testing stations coupled to the University of WisconsinÐMadison (UW-M) Ion Beam Laboratory (IBL)Õs 1.7 MV Tandem accelerator. Total estimated project cost $429,342. | General Scientific Infrastructure | FY2024 | |
Novel Optical Spectroscopy System (NOSS) to Enhance VCU Advanced Materials Research and Education | Virginia Commonwealth University | $235,908.00 | Virginia Commonwealth University will develop a novel optical spectroscopy system to strengthen and enhance research & teaching capabilities for material characterization & analysis of advanced nuclear fuel and waste. | General Scientific Infrastructure | FY2024 | |
Establishing a Nuclear Science and Radiochemistry Instrumentation Hub for Education and Research at Washington State University | Washington State University | $266,063.00 | Washington State University will provide $16,064 cost share to enhance their nuclear science and radiochemistry research and education infrastructure with the purchase and installation of 1) a liquid scintillation counter with an alpha-beta separation package and 2) a mobile gamma spectrometer capable of measuring low energy gamma-rays (< 100 keV) and can be readily transported to teaching and research labs. Total estimated project cost $282,127. | General Scientific Infrastructure | FY2024 | |
Reactor Cooling Infrastructure Improvements at the KSU TRIGA Reactor Facility | Kansas State University | $175,153.00 | The KSU TRIGA Mark II Research Reactor will replace and upgrade cooling system components to increase operational reliability. | Reactor Upgrades | FY2024 | |
Operations and Utilization Improvements at the PSU Breazeale Reactor | Pennsylvania State University | $177,409.00 | Project is a set of infrastructure upgrades focused on improving utilization, reliability, and safety at the PSU Breazeale Reactor. Included in the project are a new console uninterruptible power supply, an ultrapure water source for radiochemistry, a digital signal analyzer for the emergency operations center HPGe detector, a new ion exchange vessel for the primary water system, and new in-core and beamline detectors for the rapid and repeatable measurement of neutron flux. | Reactor Upgrades | FY2024 | |
Reactor Effluent Analysis Instrumentation for Rhode Island Nuclear Science Center | Rhode Island Nuclear Science Center | $124,615.00 | The proposed project is to acquire a complete, new gamma spectroscopy system. | Reactor Upgrades | FY2024 | |
Linear Power Safety Channel Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $598,075.00 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace the 2 existing Linear Power monitoring Safety Channels amplifiers. | Reactor Upgrades | FY2024 | |
MURR Facility Access Control Upgrade | University of Missouri, Columbia | $378,255.00 | Proposal is to acquire hardware and software necessary to upgrade the MU Research ReactorÕs facility access control system to a more secure system to maintain facility protection and to meet increased demands from faculty and student researchers authorized to use various areas of the MURR facility. | Reactor Upgrades | FY2024 | |
Priority hardware replacement for the AGN-201M reactor at the University of New Mexico | University of New Mexico | $437,995.00 | The proposed effort will replace aging and degraded hardware in the UNM AGN-201M nuclear reactor, including original power supplies and reactor safety logic systems, improving reactor safety and reliability. | Reactor Upgrades | FY2024 | |
Continuous Air Monitor and Source Range Detection Upgrade for the University of Utah TRIGA Reactor | University of Utah | $96,440.00 | The objective of this proposal is to increase operational reliability for UUTR operations by providing redundancy for aging equipment necessary for reactor operation. | Reactor Upgrades | FY2024 | |
Infrastructure Enhancements in Support of Safety and Operational Reliability at the WSU TRIGA Reactor | Washington State University | $365,195.00 | Projects aim to replace the 62-year old obsolete overhead crane and add an underwater pool illumination system. Both are used in support of reactor maintenance, fuel inspections and movement, teaching, training, and research activities at the WSU Nuclear Science Center 1 MW TRIGA reactor. | Reactor Upgrades | FY2024 | |
High Tempurature Thermal Diffusivity Equipment for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $136,000 | Project seeks to upgrade the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) post-irradiation examination (PIE) facilities to better complement the irradiation capabilities and broaden our role as a Nuclear Science User Facilities (NSUF) partner. Our eventual goal is to enable the MITR to provide full irradiation and sample analysis capabilities, from the start to the end of NSUF projects. | General Scientific Infrastructure | FY2023 | |
High-speed X-ray Imaging System Under a Chemically Protected Environment for Advanced High-temperature Non-Water-Cooled Reactor Experiments | Pennsylvania State University | $326,898 | Pennsylvania State University seeks a high-speed X-ray imaging system under a chemically controlled atmosphere to study high-temperature advanced reactor coolants and the materials-environment interactions. The capability of imaging low radioactive liquids and solids using a high-energy X-ray beam, at a very high imaging rate, and under a chemically protective environment is currently not available in the Nuclear Energy Infrastructure Database. | General Scientific Infrastructure | FY2023 | |
Hot Isotatic Pressing (HIP) for Nuclear Fuels and Structural Materials | Purdue University | $258,750 | Purdue University seeks to expand the Nuclear Science User Facilities (NSUF) capabilities to include hot isostatic pressing (HIP) equipment to fabricate, densify, and/or process nuclear structural materials, nuclear fuels, radioactive waste, and radiation detectors. | General Scientific Infrastructure | FY2023 | |
A Molten Salt Training and Research Loop for Advanced Nuclear Reactors | North Carolina State University | $250,000 | North Carolina State University will procure a molten salt pumped loop and glove box for both cutting-edge R&D and laboratory training for upper-division undergraduate and graduate students. Future users of the salt loop will investigate a diversity of research topics that include fluid characterization, material corrosion, thermos-hydraulics, sensor development, and more. | General Scientific Infrastructure | FY2023 | |
Establishment of Hot Cell Irradiated Materials Micro and Nano-Mechanical Testing at the University of New Mexico | University of New Mexico | $209,305 | Project seeks to enhance the materials characterization capabilities at the University of New Mexico hot cell facilities through acquisition of a microhardness tester, an in situ SEM picoindenter, and a digital image correlation system. | General Scientific Infrastructure | FY2023 | |
Establishment of a Salt Characterization Facility at UNR | University of Nevada, Reno | $180,779 | Project seeks to obtain accessories for existing characterization tools to determine the composition of halide salts. Specifically, a double glovebox, an ELTRA combustion analyzer and a titrator. This facility along with existing characterization infrastructure at UNR will allow for complete characterization of the salt composition. | General Scientific Infrastructure | FY2023 | |
Develop a Thermophysical Lab for Environment-Sensitive Nuclear Materials at Oregon State Univeristy | Oregon State University | $249,885 | Project aims to enhance Oregon State University (OSU)Õs capabilities to handle and comprehensively characterize air- and water-sensitive nuclear materials, including (fuel-bearing) molten salts, liquid and solid metallic fuels, etc., by developing a THERmophysical and cheMical lab for envirOnment-sensitive NUCLEar mAteRials (The Thermonuclear lab). | General Scientific Infrastructure | FY2023 | |
Establishing a Nuclear Chemistry Core Facility at the University of Wyoming | University of Wyoming | $300,000 | University of Wyoming seeks to secure the necessary infrastructure to establish a nuclear chemistry core facility which will serve the research and teaching missions of the University of Wyoming. | General Scientific Infrastructure | FY2023 | |
An Extreme-Temperature Load Frame for Reduced Length Scale Experimentation to Support Nuclear Materials Research and Education | University of Utah | $244,942 | University of Utah seeks to acquire a turn-key Psylotech µTS testing system and furnace chambers to enable elevated temperature testing (up to 1600¡C) of reduced length scale specimens (dimensions from 10 µm to 10mm). | General Scientific Infrastructure | FY2023 | |
Advanced SMR Simulator to Reinforce Nuclear Engineering Infrastructure at Rensselaer | Rensselaer Polytechnic Institute | $250,000 | Project seeks to strengthen the research and educational capabilities of the Nuclear Engineering Program at RPI (developing the NuScale Energy Exploration (E2) Center and a digital control room). | General Scientific Infrastructure | FY2023 | |
NuScale SMR Energy Exploration Center for UNLV Engineering Program Education and Research | University of Nevada, Las Vegas | $250,000 | Project seeks to enhance the teaching and research capabilities of the Nuclear Engineering Program at the University of Nevada Las Vegas (UNLV). The project aims to acquire the NuScale Energy Exploration (E2) Center, a state-of-the-art full scope reactor simulator based on the NuScale small modular reactor (SMR). | General Scientific Infrastructure | FY2023 | |
Upgrades to the Maryland University Training Reactor Cooling and Neutron Activation Analysis Systems for Enhanced Operational Reliability and Capability | University of Maryland, College Park | $1,465,001 | University of Maryland, College Park will increase and restore the safety, operational availability, and experimental capabilities of the Maryland University Training Reactor. A complete overhaul of the Primary and Secondary Coolant Systems will enable the reactor to operate continuously at its full licensed power. The acquisition of a microbalance and fume hood will improve the sensitivities of the neutron activation analysis program. | Reactor Upgrades | FY2023 | |
Replacement if the Oregon State TRIGA Reactor Ventilation System | Oregon State University | $416,405 | Oregon State University will increase the reliability and safety of the operational condition of the Oregon State TRIGA¨ Reactor ventilation system. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research as well as material science. | Reactor Upgrades | FY2023 | |
Replacement and Upgrade of the Reactor Secondary Cooling Loop at the WSU 1 MW TRIGA Reactor | Washington State University | $740,121 | Wasington State University will enhance the continued operational reliability and efficiency of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by replacing and simultaneously upgrading the research reactor cooling system secondary loop with equipment sized appropriately for heat removal and operation during summer heat. | Reactor Upgrades | FY2023 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Cruicial Cooling System Components | The Ohio State University | $87,158 | The Ohio State University Research Reactor will update replacement/spare custom facility components to enhance the institutionsÕ availability to perform R&D. | Reactor Upgrades | FY2023 | |
Procurement of Spare Digital Recorders, Replacement Portal Monitor, and Pool Lighting System at the Missouri S&T Reactor | Missouri University of Science and Technology | $25,865 | Missouri University of Science and Technology will procure spare digital recorders for the MSTR control console, a new portal monitor, and a pool lighting system. These improvements will bolster facility safety and reliability. | Reactor Upgrades | FY2023 | |
Radiological Safety and Operational Reliability Enhancements at the Penn State Breazeale Reactor | Pennsylvania State University | $78,531 | Pennsylvania State University will purchase two Alpha/Beta Continuous Air Monitors (Mirion iCAM) to replace the several decades old AMS-3 units, two new hand, cuff, and foot surface contamination monitors, one for reactor bay and the other in the new reactor beam hall exit area, a spare control rod servo drive and motor mechanism. | Reactor Upgrades | FY2023 | |
University Research Reactor Upgrades Infrastructure Support for the MIT Research Reactor's Area Radiation Monitor System Upgrade | Massachusetts Institute of Technology | $898,769 | Massachusetts Institute of Technology will upgrade the reactor's area radiation monitor system to improve reactor safety, personnel safety and reactor radiological emergency preparedness by replacing and expanding the existing area radiation monitor system with updated technology and equipment. | Reactor Upgrades | FY2023 | |
Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor Phase II | Abilene Christian University | $292,770 | Abilene Christian University will provide $42,770 in cost match toÊexpand a new radioactive materials characterization capability in the Nuclear Energy eXperimental Testing (NEXT) Laboratory at Abilene Christian University. The new capability will provide real-time in situ characterization of molecular species in forced-flow molten salt systems using UV-Vis-IR spectroscopy and electrochemistry of salt and mass spectrometry of the off gas in a new radiological lab (>5mr/hr@30cm). | General Scientific Infrastructure | FY2022 | |
Advanced Raman Spectroscopy for Characterization of f-Element Coordination Chemistry and Multiphasic Nuclear Waste Forms | Clemson University | $244,767 | This project seeks to purchase a new Raman microscope for student and faculty research at Clemson University. The new Raman microscope will be dedicated to examination of the chemistry and structure of radioactive materials. | General Scientific Infrastructure | FY2022 | |
Microscale PIE Tools for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $156,249 | The MIT Nuclear Reactor Lab (NRL) seeks to purchase a Flash Differential Scanning Calorimeter, to enable a greatly increased scientific output from all materials used in the MIT reactor and throughout the NSUF network. The FlashDSC-2 allows thermal analysis up to 1000C, enabling the direct measurement of Wigner energy (radiation defects) for defect reaction analysis and quantification, which has major implications for correlating radiation effects from neutrons and ions. | General Scientific Infrastructure | FY2022 | |
SMR Full Scope Simulator for Upgrading the Ohio State University Nuclear Engineering Program Research and Education Infrastructure | The Ohio State University | $275,000 | The Ohio State University will provide $25,000 inÊcost matchÊto enhance the educational and research capabilities of the Nuclear Engineering Program at The Ohio State University (OSU) by upgrading the infrastructure related to advanced reactor risk, reliability, safety and security characterization and improvement, and in support of its NSUF in the form of OSUÕs Nuclear Reactor Laboratory. Risk, reliability, safety and security characterization will be enhanced through acquiring and installing NuScale's full scope simulator. | General Scientific Infrastructure | FY2022 | |
Reactor Simulator and Digital Control Room to Create New Paradigms for Nuclear Engineering Education and Research | University of Illinois at Urbana-Champaign | $317,500 | The University of Illinois at Urbana-Champaign will provide $67,500 inÊcost match to enhance the educational and research missions of the Department of Nuclear, Plasma, and Radiological Engineering (NPRE), as well as the research mission of DOE-NE, this project aims to acquire a nuclear reactor simulator and a versatile, configurable, and extensible digital control room. This simulator and digital control room will be used in undergraduate and graduate course work, in K-12 outreach efforts, and for research in several areas of importance to DOE-NE. | General Scientific Infrastructure | FY2022 | |
Scientific Infrastructure Support for Post Irradiation Examination of Materials at MURR | University of Missouri, Columbia | $225,933 | This proposal requests funding for equipment that will establish a core of materials characterization capabilities at the University of Missouri Research Reactor Center (MURR), and includes a Raman spectroscopy system, a microhardness tester, a micro test stand, a microscope and a digital image correlation system. | General Scientific Infrastructure | FY2022 | |
High-Temperature Thermomechanical Characterization of Nuclear Materials | University of Pittsburgh | $565,573 | The University of Pittsburgh will provide $315,574 inÊcost match toÊpurchase a Gleeble system equipped with extreme environmental capabilities to strengthen core nuclear capability in strategic thrust areas in fuel performance, additive manufacturing of nuclear components, and reactor materials at the University of Pittsburgh. | General Scientific Infrastructure | FY2022 | |
Construction of a Flexible Fast Flux Facility for Cross Section Measurement, Benchmarking, and Education | University of Tennessee at Knoxville | $319,306 | The University of Tennessee at Knoxville will provide $69,306 in cost matchÊto construct, license and operate a facility that can be used to measure nuclear physics properties in specific fast reactor flux specta. This project will deliver to the nation a Fast Flux Facility (FFF) that supports a variety of fast reactor designs including sodium, lead, and salt; through improved cross sections and neutronics codes for advanced reactor design and licensing. | General Scientific Infrastructure | FY2022 | |
Procurement of Spare Parts for Instrumentation Channels, Electronics Test Equipment, and Power Uprate Study at the Missouri S&T Reactor | Missouri University of Science and Technology | $172,157 | This project has three objectives: 1) to procure spare and replacement parts needed to maintain the reactorÕs safety and control systems, 2) to develop a suite of electronics test equipment that will provide researchers with the ability to study the performance of electronics under irradiation, and 3) to perform computational analyses needed as part of the process of requesting a power uprate. | Reactor Upgrades | FY2022 | |
Enhanced Safety, Operations, and Utilization Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $130,100 | The objective of this proposal is to provide the PULSTAR with essential safety, plant status monitoring, utilization, and radiation protection infrastructure upgrades that will ensure its continued safe and efficient operation currently and at 2-MWth. This infrastructure upgrade allows the facility to continue to meet the increasing needs of PULSTAR users, enhancing user experience, expansion into new facilities, and supports the institutional and national missions. | Reactor Upgrades | FY2022 | |
Enhancement of radiation safety, security, and research infrastructure at newly constructed Neutron Beam Hall at the Penn State Breazeale Nuclear Reactor | Pennsylvania State University | $364,240 | In this application, we seek funds for enhancement of radiation safety and security infrastructure for our new expanded beam hall, a triple neutron beam catcher for new cold neutron beamline, and a neutron beam cave for the beam bender and neutron chopper sections of the extended beam line for the SANS facility. The funds requested for this application will enable us to utilize the expanded beam hall safely and efficiently. | Reactor Upgrades | FY2022 | |
Reed College Reactor N.I. Power Monitoring Channels | Reed College | $543,400 | Reed College requests funding to primarily secure and secondarily extend the life of the safety system functions with new power monitoring channels at the console. Obsolete safety-critical signal conditioning of old channels puts the reactor at risk of indeterminate shut-down if not replaced by modern, well-supported technology. | Reactor Upgrades | FY2022 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Crucial Reactor Pool Components | The Ohio State University | $111,354 | The Ohio State University Research Reactor depends upon many old, custom components in and around the reactor pool for which there are no replacements. Failure of any of these would likely result in an extended downtime. We are requesting funding to obtain replacement/spare custom facility components to Òenhance the institutionsÕ availability to perform R&D that is relevant to DOE-NEÕs missionÓ by precluding a such a failure. | Reactor Upgrades | FY2022 | |
University of Florida Training Reactor Gaseous Effluent Monitoring in Support of Reactor Operations and Research Activities | University of Florida | $55,720 | We propose the procurement of new gas effluent monitoring systems that will enable the UFTR to offer an increased suite of capabilities including plume monitoring and source term-tracking. The proposed system redundancy will enable a significant improvement of reliability and availability. | Reactor Upgrades | FY2022 | |
Core Modifications to Ensure the Continued Safe and Reliable Operation of the Maryland University Training Reactor | University of Maryland, College Park | $171,956 | During the installation of lightly irradiated fuel bundles, reactor operators discovered that these new fuel bundles would not fit into the grid plate. It was determined that the original bundles were installed in the wrong orientation in 1974. To install the lightly irradiated fuel bundles, reactor operators will need to unload the current core and disassemble all fuel bundles for inspection. The fuel will then be re-assembled with new end adapters for installation in the correct orientation. | Reactor Upgrades | FY2022 | |
Operations and Radiation Safety Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $156,496 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace aging components associated with the area radiation monitoring system and the reactor instrumentation and control systems. In addition, a broad energy germanium detector will be acquired to provide radiological monitoring capabilities at the reactor facility. These acquisitions will provide reliability of reactor operations and improve radiation safety for staff, faculty, and students working at the reactor. | Reactor Upgrades | FY2022 | |
Replacement and Upgrades to MURRÕs Facility Electrical Transformer and Reactor Primary Coolant Pumps and Motors | University of Missouri, Columbia | $170,775 | Replacement of primary coolant pumps and a facility electrical transformer is a high priority, critically needed enhancement for the MURR Center in order to support academic programs at the University of Missouri (MU) and partnering schools, and maintain the facilityÕs ability to perform research supporting DOE-NEÕs research mission. | Reactor Upgrades | FY2022 | |
Upgrading the UT Austin Nuclear Engineering Teaching Laboratory Reactor Console and Instrumentation to Advance Nuclear Science and Engineering Research and Education | University of Texas at Austin | $792,101 | The objective of this project is to replace the original General Atomics (GA) integrated digital control and instrumentation system for the TRIGA Mark II nuclear reactor at the Nuclear Engineering Teaching Laboratory (NETL) of The University of Texas at Austin (UT) with a modern, reliable, enhanced and capable system to increase useable reactor power, eliminate the risk for catastrophic failure, and improve reactor safety. | Reactor Upgrades | FY2022 | |
Radiation Tolerant Inspection Camera at the University of Wisconsin Nuclear Reactor (UWNR) | University of Wisconsin-Madison | $55,495 | The specific objective of this proposal is to enhance safety and ensure regulatory compliance at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM) through the acquisition of a radiation tolerant underwater camera with pan, tilt, zoom (PTZ) capabilities. | Reactor Upgrades | FY2022 | |
Enhancing the Operational Reliability of the TRIGA Reactor at Washington State University Utilizing Back-Up Reactor Core Nuclear Instrumentation | Washington State University | $104,976 | The goal of this project is to enhance the continued operational reliability of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by procuring spare reactor power detectors to replace aging ex-core detectors and fabricating detector housings. | Reactor Upgrades | FY2022 | |
NEUP Project 21-25190: Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor | Abilene Christian University | $367,793 | _This project supports establishing new and unique real-time direct chemical analysis capabilities for molten salt systems, specifically adding Raman and gamma spectroscopies to the Abilene Christian University (ACU), the Nuclear Energy eXperimental Testing (NEXT) Lab molten salt and materials characterization tools._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25206: High-Speed Terahertz Scanning System for Additively Manufactured Ceramic Materials and Composites for TCR Core Materials | Alfred University | $90,000 | _This project supports procurement and installation of a custom-made high-speed terahertz (THz) dual scanner system that will demonstrate non-destructive imaging of AM ceramic materials and composites for TCR core application._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25188: High-Efficiency Electrochemical Test Facility for Corrosion and Hydrodynamic Analysis in Molten Salts | Brigham Young University | $180,269 | _This project advocates the purchase of rotating cylinder electrode (RCE) to provide high throughput testing of materials and measurement of physical properties in molten salts. The proposal suggests that the purchase will yield an "Intermediate" advance on current methods for interrogating corrosion in molten salts._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25233: CSU Accurate Neutron Dosimetry Research and Teaching Infrastructure | Colorado State University | $39,500 | _This project supports procuring a new and well-characterized set of neutron detectors (Bonner Spheres) and the ATTILA4MC computer code to provide additional neutron detection capacity and neutron spectroscopy capabilities. Primary utilization is to enhance student education and training in the area of neutron detection and dosimetry._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25109: Interrogating f-element-ligand Interactions by X-ray Absorption Spectroscopy | Florida International University | $302,826 | _This project promotes the purchase of analytical instruments, including an X-ray absorption spectrometer and a probe for NMR spectrometer, to enhance radiochemistry research._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25197: Ultrafast elemental depth profiling to enable high-throughput characterization of nuclear materials and fuels | Missouri University of Science and Technology | $304,724 | _This project will support the purchase of a pulsed radio frequency glow discharge optical emission spectrometer (GDOES), with the capability of ultrafast elemental depth profiling. Potential unique capability as a tool for high throughput compositional characterization of nuclear materials and fuels._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25130: High Resolution Scanning Acoustic Microscopy System for High Throughput Characterization of Materials and Nuclear fuels | North Carolina State University | $290,000 | _This project requests funding for the purchase of a state-of-the-art high resolution scanning acoustic microscopy system for in high throughput characterization of nuclear fuels, sensor materials, cladding materials, reactor structural materials and 3D printed components. This novel non-destructive characterization capability will enhance capabilities at a current NSUF partner institution providing a unique offering within NSUF NEID._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25148: Dedicated Infrastructure for In Situ Characterization of Structural Materials | State University of New York, Stony Brook | $204,327 | _This project supports procurement of a suite of equipment dedicated to characterizing radioactive materials. Microscale specimen preparation and property testing equipment is an area of significant need within the nuclear research complex._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25122: Infrastructure upgrades to the Texas A&M University Accelerator Laboratory | Texas A&M University | $246,418 | _This project will provide support to enhance Texas A&M Univ. Accelerator Laboratory, specifically (1) to increase the proton irradiation efficiency by one order of magnitude; (2) to offer the new capability of simultaneous proton ion irradiation and corrosion testing in molten salts related to molten salt reactor (MSR) applications; and (3) to develop the new capability of in-situ characterization of specimen thickness and elemental distributions during corrosion testing. The project will lead to a capability that is not duplicated at other facilities._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25126: Development of a Rapid Chemical Assessment Capability for In-Situ TEM Ion Irradiations | University of Michigan | $350,000 | _This project will support the acquisition and deployment of a Gatan GIF (Gatan Imaging Filter) Continuum ER system in the Michigan Ion Beam Laboratory (MIBL) ThermoFisher Tecnai TF30 scanning/transmission electron microscope (S/TEM) that is augmented to allow in situ dual ion beam irradiation. This purchase will result in a significant enhancement of the characterization capabilities of MIBL system, that will result in high-throughput experimental workflows including in-situ TEM ion irradiations._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25140: Neutron irradiation facility at the NSL | University of Notre Dame | _This project supports development of a neutron irradiation station (NIS) at the Nuclear Science Laboratory (NSL) at the University of Notre Dame (UND) providing a monoenergetic flux of neutrons in the energy range of a few keV to a few MeV produced via (p,n) or (a,n) reactions on low-Z target materials, such as Li and Be. Significant utilization is expected within both educational and R&D missions, with R&D utilization expanding from nuclear data to radiation effects studies. The capability will be hosted by NSF-supported facility with a significant postgraduate "hands-on" education program._ | General Scientific Infrastructure | FY2021 | ||
NEUP Project 21-25232: A dedicated facility for direct visualization of bubble dynamics in molten salts | University of Puerto Rico at Mayagez | $250,000 | _The proposed facility in this projects enables experiments to correlate bubbles and bubbles clusters size, dynamics, composition, terminal velocity, temperature, environmental pressure and composition and purity with their aerosol production at bursting, at temperatures from operating conditions up to 1000 ¡C. Unique capability for molten salts systems._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25238: A High-Temperature Mechanical Testing Platform for Accelerated, Parallelized, and Miniaturized Materials Qualification | University of Texas at El Paso | $250,000 | _This project requests funds forÊthe acquisition of an Instron 8862 servo-electric testing system with intelligent furnace control capable of high temperature quasi-static (tensile, creep, stress relaxation, etc.) and dynamic testing (low cycle fatigue, creep-fatigue, etc.)._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25241: Fuel Fabrication Line for Advanced Reactor Fuel Research, Development and Testing | University of Texas at San Antonio | $286,344 | _This project will support the fabrication and testing of advanced nuclear fuels and materials, specifically the development of the uranium-bearing compounds, alloys, and composites. Specific focus is the synthesis of novel samples of relevant fuel compounds, like uranium nitride (UN) and the fabrication of dense, uniform geometries (pellets) of these samples as well as fuel compounds such as namely uranium silicides, carbides, composite forms of these fuels, and metallic fuel alloys/ compounds._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25150: Instrumentation for Enhanced Safety, Utilization, and Operations Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $341,760 | _This project will upgrade and enhance the safety, operations, and utilization infrastructure at the PULSTAR reactor of North Carolina State University (NCSU); installation of modern reactor console instrumentation to support the continued safe and reliable operation of the PULSTAR reactor and installation of comprehensive and facility wide radiation protection and moisture/temperature sensor systems._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25227: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Ensuring Continued Operational Capacity | Oregon State University | $555,416 | This project will upgrade necessary spare items to ensure sustained operation without lengthy unplanned outages for the Oregon State University Mk II Oregon State TRIGA¨ Reactor (OSTR) at the Oregon State University Radiation Center._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25222: High-Temperature Molten Salt Irradiation and Examination Capability for the Penn State Breazeale Reactor | Pennsylvania State University | $179,715 | _This project will build and install a permanent, high-temperature, molten salt neutron irradiation and post-irradiation analysis capability at the Penn State Breazeale Reactor (PSBR)._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25228: Reed Research Reactor Compensated Ion Chamber Replacement | Reed College | $140,000 | _This project will improve reliability of the reactor program at Reed College byÊpurchasingÊa spare Compensated Ion Chamber (CIC) to monitor the reactor power. The CIC allows the reactor operator to monitor and control the reactor power._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25112: Enhancement of Availability of The Ohio State University Research Reactor for Supporting Research and Education | The Ohio State University | $73,539 | This project wil support replacement parts for essential OSU Research Reactor (OSURR) control-room equipment that has been in continuous service for decades; custom reactor protection system (RPS) modules for which the lab has no spares. | Reactor Upgrades | FY2021 | |
NEUP Project 21-25142: Safety and Reliability Enhancements for the UC Irvine TRIGA Reactor | University of California, Irvine | $74,950 | _This project will increase the reliability of the TRIGA reactor instrumentation and control systems, increase the radiation safety for experiments while expanding research capabilities, and improve the fuel surveillance and management program._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25213: Acquisition of an Automated Pneumatic Sample Transfer System for Neutron Irradiation at the University of Florida Training Reactor | University of Florida | $282,000 | _The University of Florida will acquire an automated pneumatic sample transfer system to be used for moving samples into the University of Florida Training Reactor for irradiation and transferring the samples to laboratories for experimental use._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25202: Advancing Radiation Detection Education at the Maryland University Training Reactor | University of Maryland, College Park | $208,140 | _This project will modernize the radiation safety equipment and radiation detection capabilities at the Maryland University Training Reactor._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25132: Development of Neutron Tomography at the University of Wisconsin Nuclear Reactor | University of Wisconsin-Madison | $222,294 | _This proposal will enhance nuclear energy-related research and development at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM). Proposal seeks to enhance the neutron radiography capabilities at the reactor, by acquiring a high-resolution detector, rotation stage, visualization software and a high-performance computer._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25215: Upgrade to the 1 MW TRIGA Research Reactor Pool Liner at WSU | Washington State University | $302,657 | _This project will enhance the safety, performance, and continued operational reliability of the WSU NSC 1.0 MW TRIGA conversion research reactor: 1) Restore the reactor tank concrete, which is in much need of repair, and 2) Replace the epoxy concrete tank liner with a modern, robust epoxy liner that has already been successfully utilized and in service at other reactor facilities._ | Reactor Upgrades | FY2021 | |
NEUP Project 20-21610: Enhancing Mechanical Testing Capabilities to Support High-throughput Nuclear Material Development | Auburn University | $210,398 | _The project seeks to enhance the advanced mechanical testing capabilities at Auburn University through the aquisition of two key instruments to further support its existing nuclear research and education programs, as well as advanced manufacturing. An integrated micro- and nano-indentation platform with high-temperature capability will be acquired to cover grain scale high-throughput mechanical evaluation. A digital image correlation system will also be acquired to develop a high-throughput macroscale mechanical testing procedure of the compositionally and microstructurally gradient tensile specimens to maximize neutron test efficiency. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19328: A 3D Metal Printer to Enable Innovations in Nuclear Materials and Sensors | Boise State University | $319,941 | _This project will establish the capability to additively manufacture metallic materials at the Center for Advanced Energy Studies and within the NSUF network. This capability will help advance cross-cutting research on additive manufacturing of nuclear materials and in-core sensors and will enable new educational opportunities to attract and train high-quality students for the next generation nuclear energy workforce. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21612: High-Speed Thermogravimetry Equipped with Mass Spectrometry for Thermodynamic and Kinetic Study of Nuclear Energy Materials | Clemson University | $228,237 | _The project will allow for the acquisition of a state-of-the-art thermal analysis infrastructure of a high-speed thermogravimetry equipped with online mass spectrometry, allowing for high-speed temperature variation and instantaneous, simultaneous, and accurate quantification of exit species. The rapid and accurate thermodynamic and kinetic study of nuclear energy materials and processes will result in a robust thermodynamic characterization hub for nuclear energy materials and processes. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21572: Development of an In-Situ Testing Laboratory for Research and Education of Very High Temperature Reactor Materials | North Carolina State University | $261,175 | _This project will allow for the development of a unique in-situ testing laboratory (ISTL) through acquisition of a scanning electron microscope (SEM) and installation of a miniature thermomechanical fatigue testing system inside the SEM. The proposed ISTL will give the research community unprecedented capability to perform nuclear research, educate next generation scientists, and develop a future NSUF program in studying real-time microstructure evolution of very high temperature reactor materials under realistic loading conditions. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21567: Development of a High Throughput Nuclear Materials Synthesis Laboratory | University of Michigan | $166,560 | This project will allow for the acquisition of equipment to establish rapid materials consolidation and modification to complement the already established facilities at the University of Michigan, including the world-class Michigan Ion Beam Laboratory (MIBL). Coupling both MIBL and the proposed facility in a single research effort will result in a new end-to-end high throughput nuclear materials discovery capability in a single institution. The resulting increase in capability will serve all nuclear energy supporting universities, national laboratories, and industry. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21628: Infrastructure Support for In-situ Transmission Electron Microscopy Examination of Structure, Composition and Defect Evolution of Irradiated Structural Materials at University of Nevada, Reno | University of Nevada, Reno | $343,147 | _The project will establish a new, in-situ, nano-scaled structure, composition and defects evolution examination infrastructure system for irradiated structural materials using the Hysitron PI-95 Transmission Electron Microscope (TEM) PicoIndenter, which is designed to work in conjunction with a state-of-art high resolution TEM. This system will allow in-situ characterization under mechanical strain in a variety of irradiated materials at the University of Nevada, Reno. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21603: Establishment of Remote Control High Temperature Mechanical Testing Facility in a Hot Cell at The University of New Mexico | University of New Mexico | $250,000 | _This project will establish a high temperature mechanical testing capability within the hot cell of Nuclear Engineering Department at the University of New Mexico that can be operated using the existing manipulators, allowing remote operation for testing radioactive specimens. Combined with the existing infrastructure, this capability will allow establishment ofÊmicrostructure-mechanical property relations in structural materials for nuclear applications. The facility will also help educate and train the next generation of nuclear scientists, engineers, and policy makers. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21614: High Temperature Thermophysical Properties of Nuclear Fuels and Materials | University of Pittsburgh | $300,000 | _This project will allow the acquisition of key equipment to strengthen the core nuclear capability in the strategic thrust area of instrumentation and measurements at the University of Pittsburgh. This will be accomplished through the purchase of a laser flash analyzer and a thermal mechanical analyzer as a tool suite for complete thermophysical property information, and to fill an infrastructure gap to enhance nuclear research and education. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21624: Ex-situ and In-situ Molten Salt Chemical Analysis Capabilities for the Development of Materials in Molten Salt Environments | University of Wisconsin-Madison | $263,000 | _The project will allow for the addition of a state-of-the-art laser induced breakdown spectroscopy system, which will complement the University of Wisconsin-Madison Nuclear Engineering program's molten salt researchÊcapabilitiesÊwith an ex-situ and in-situ chemical analysis characterization tool that can detect all impurities in the salt, even low-Z elements. With these additions, higher throughput analysis of alloys and salts for molten salt reactor applications would be developed and would accelerate material discoveries. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21609: A Customized Creep Frame to Enable High-Throughput Characterization of Creep Mechanism Maps | Utah State University | $160,000 | _This project will allow for the acquisition and installation of a custom creep testing frame with an environmental chamber which has been modified with windows to support camera-based strain measurements. The measurements obtained using the equipment will be used to study heterogeneous creep strain accumulation in nuclear materials, with applications geared towards light water reactor sustainability, accident tolerant fuels, and other important materials-related challenges in nuclear science and engineering._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19067: Laboratory-based High-Resolution X-ray Absorption and Emission Spectroscopy for Nuclear Science and Radiochemistry Research and Education | Washington State University | $287,450 | _This project will allow for the acquisition of a radiological laboratory-based high-resolution hard X-ray spectrometer that can perform both X-ray absorption spectroscopy and X-ray emission spectroscopy. This instrument will greatly upgrade the technical capability of the nuclear reactor facility at Washington State University (WSU) for nuclear-related and radiochemical research and teaching, allowing for enhancement of WSUÕs capacity to attract high quality students interested in nuclear science._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-20215: A New Control Rod Drive Mechanism Design for the ISU AGN-201M Reactor | Idaho State University | $59,262 | _The existing control rod drive mechanism of the Idaho State University's Aerojet General Nucleonics model 201-Modified reactor will be replaced with a new, reliable, alternative design to reduce the overall complexity and probability of failure and improve the overall reliability and safety of the reactor. With proper material selection and improved structural design, the new drives are lighter, with little to no change in structural integrity, and eliminate the binding scenarios by using a single lead screw and implementing additional guide rods. The new design ensures the reactorÕs long-term viability for educational and research activities and increases the reliability and safety of operation. | Reactor Upgrades | FY2020 | |
NEUP Project 20-20186: University Research Reactor Upgrades Infrastructure Support for the MIT Research ReactorÕs Normal and Emergency Electrical Power Supply Systems | Massachusetts Institute of Technology | $537,818 | _The existing emergency electrical power battery system at the Massachusetts Institute of Technology Research Reactor will be updated with new technology and equipment, enhancing emergency preparedness of the reactor facility by restoring the post-shutdown emergency power supply for at least eight hours. In addition, the two existing reactor motor control centers that provide normal electrical power to the reactor's main cooling pumps, building isolation equipment, instrumentation, and other necessary operational and safety equipment, will be updated to improve equipment reliability and enhance personnel electrical safety by using components that meet modern standards. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21634: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Increasing Material Science Capability | Oregon State University | $118,020 | _The TRIGA¨ Mk II Oregon State TRIGA¨ ReactorÊprogram will purchaseÊa liquid scintillation counter in order to increase utilization of the facility. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research, as well as materials science at Oregon State University and development relevant to the DOE._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21589: Underground Waste Storage Tanks Removal and Installation of New Above Ground Waste Storage Tanks and Waste Evaporator Pit at the Radiation Science and Engineering Center | Pennsylvania State University | $306,744 | _In order for the necessary construction of a new beam ball at the Penn State Breazeale Reactor, the antiquated underground storage tanks will be replaced with above ground water storage tanks within the expanded neutron beam hall space. This effort will allow progress to continue toward the goal of massively expanding the number of neutron experiment stations available to the Radiation Science and Engineering Center users._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21633: PUR-1 Water Processing and Cooling System Upgrade | Purdue University | $36,000 | _The heat exchanger and associated water process system of the Purdue University Reactor Number One will be replaced, in order to ensure the reactor's safe and continuous operation. This replacement will allow the Purdue UniversityÊReactorÊNumber One to reject 10 kW of reactor heat with nominal excess capacity and achieve steady state operations at the fully licensed power level with enhanced capacity, reliability, and safety. With this replacement, the facility will be able to access fluence required for meaningful research applications. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21571: Reactor Safety Control Component Upgrade | Rhode Island Nuclear Science Center | $477,000 | _The Rhode Island Nuclear Science Center's last remaining original components in the reactor controls system will be upgraded and the remaining components will be integrated into a configuration that not only enhances the reactor operatorÕs ability to operate the reactor safely, but also improves reliability, maintenance capability and longevity. By replacing the last of the vacuum tube based technology from the original installation with the Reactor Safety Control Components, the long term viability of the research reactor to support ongoing and future research projects and educational endeavors will be improved. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21621: Equipment Upgrades at University of Massachusetts Lowell Research Reactor (UMLRR) to enable neutron-induced reaction research. | University of Massachusetts, Lowell | $129,788 | _Equipment and the experimental infrastructure at the University of Massachusetts-Lowell Research Reactor will be upgraded, in order to ensure the safe and efficient operation of the reactor during the next 20 or more years of operations. A new control console that will ensure the safe and efficient operation, as well as upgrades to the experimental infrastructure of the facility, during the next 20 or more years of operations. The proposed control system upgrades will continue to enhance this ongoing educational development pathway._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21601: University of Missouri Research Reactor Beryllium Reflector Replacement | University of Missouri, Columbia | $585,013 | _The University of Missouri-Columbia Research Reactor's beryllium reflector will be replaced, due to the irradiation induced swelling from the neutron fluence and thermal induced tensile stress from radiation heating of the beryllium material. Replacing the reactorÕs beryllium reflector is a high priority and critical upgrade necessary for the continued safe and reliable operations of the reactor to support nuclear science and engineering students and faculty, as well as the facilityÕs extensive infrastructure supporting the research needs of the nuclear industry. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21593: Reactor Cooling System Upgrade for the University of Utah TRIGA Reactor | University of Utah | $487,387 | The cooling system of the Universty of Utah TRIGA reactor (UUTR) will be replaced to enhance performance and utility by allowing for the reactor to run for much longer periods at full power, increasing safety and operational reliability. Converting the cooling mechanism from a passive system to an active system will increase the cooling capacity by up to 1 MW thermal energy. This will allow for the UUTR to have much longer runtimes and higher daily neutron/gamma fluence, which will enhance the capability for a wide range of nuclear research and development efforts. | Reactor Upgrades | FY2020 |
FY 2022 Integrated Research Project Awards
The Department of Energy is awarding $24.9 million for seven Integrated Research Projects (IRPs), which address well-defined but highly complex technical issues impacting key Office of Nuclear Energy (NE) mission objectives. IRPs are multi-million dollar, three-year projects executed by university-led consortiums that typically include multiple universities, industrial and international research entities, and the unique resources of the DOE National Laboratories. IRPs comprise a significant element of DOE’s innovative nuclear research objectives and illustrate NE’s strategy to pursue R&D solutions most directly relevant to the near-term, significant needs of the NE R&D programs.
IRP award recipients are listed below.
Title | Institution | Estimated Funding | Abstract | Project Description | Project Type | Fiscal Year |
---|---|---|---|---|---|---|
Spark plasma sintering for nuclear fuel and alloy fabrication at Massachusetts Institute of Technology | Massachusetts Institute of Technology | $290,875.00 | Massachusetts Institute of Technology will provide $40,875 cost share to acquire a state-of-the-art spark plasma sintering (SPS) set up to enhance educational and research capabilities in high throughput nuclear fuels, sensor materials, cladding materials, and reactor structural materials fabrication. Total estimated project cost $331,750. | General Scientific Infrastructure | FY2024 | |
High-Throughput Serial Sectioning of Nuclear Fuels, Materials, and Sensors | Purdue University | $299,869.00 | Purdue University will provide $49,869 cost share to acquire an automated, high-throughput serial sectioning instrument for three-dimensional characterization of nuclear fuels, materials, and sensors. Total estimated projected cost $349,738. | General Scientific Infrastructure | FY2024 | |
Simulating Nuclear Radiation Environments and Testing Capabilities for Electronics | University of Central Florida | $249,970.00 | Objective of the proposal is to develop an advanced capability for simulating and studying extreme environments with elevated radiation dose and high temperature conditions similar to that in nuclear facilities. | General Scientific Infrastructure | FY2024 | |
Development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Testing | University of Illinois at Urbana-Champaign | $263,806.00 | University of Illinois at Urbana-Champaign will provide $13,806 cost share for the development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Research. Total estimated project cost $277,612. | General Scientific Infrastructure | FY2024 | |
A High Current, High Energy Helium Beamline for Accelerated Nuclear Materials Development | University of Michigan | $409,826.00 | University of Michigan will provide $159,826 cost share to acquire and deploy a new high current helium ion source and corresponding beamline components at the Michigan Ion Beam Laboratory (MIBL) to form a new high current, high energy helium beamline to enable nuclear materials studies including in-situ helium effects in stressed specimen configurations. | General Scientific Infrastructure | FY2024 | |
Commissioning of an easyXAFS to Enable Understanding of Short Order Structure in Nuclear Materials | University of Nevada, Reno | $292,085.00 | University of Nevada, Reno will provide $42,085 cost share to purchase an easyXFAS system, a high resolution, hard X-ray monochromator for X-ray absorption spectroscopy (XAS) measurements. This instrument provides signal strengths approaching those from synchrotron-based XAS systems, and would enable easy analysis of radioactive samples and rapid iterations on experiments. Up to 33% of the time will be dedicated for external users. Innovative laboratory modules will be created showcasing the use of the facility. Total estimated project cost $334,170. | General Scientific Infrastructure | FY2024 | |
In situ Characterization of Transient Radioactive Compounds | University of Notre Dame | $247,056.00 | Project will add facilities at Notre Dame Radiation Laboratory for the handling of radioactive samples. | General Scientific Infrastructure | FY2024 | |
In situ ion irradiation testing facilities for the investigation of nuclear materials under mechanical and thermal extremes | University of Wisconsin-Madison | $339,671.00 | University of Wisconsin-Madison will provide $89,671 cost share and will establish two novel testing stations coupled to the University of WisconsinÐMadison (UW-M) Ion Beam Laboratory (IBL)Õs 1.7 MV Tandem accelerator. Total estimated project cost $429,342. | General Scientific Infrastructure | FY2024 | |
Novel Optical Spectroscopy System (NOSS) to Enhance VCU Advanced Materials Research and Education | Virginia Commonwealth University | $235,908.00 | Virginia Commonwealth University will develop a novel optical spectroscopy system to strengthen and enhance research & teaching capabilities for material characterization & analysis of advanced nuclear fuel and waste. | General Scientific Infrastructure | FY2024 | |
Establishing a Nuclear Science and Radiochemistry Instrumentation Hub for Education and Research at Washington State University | Washington State University | $266,063.00 | Washington State University will provide $16,064 cost share to enhance their nuclear science and radiochemistry research and education infrastructure with the purchase and installation of 1) a liquid scintillation counter with an alpha-beta separation package and 2) a mobile gamma spectrometer capable of measuring low energy gamma-rays (< 100 keV) and can be readily transported to teaching and research labs. Total estimated project cost $282,127. | General Scientific Infrastructure | FY2024 | |
Reactor Cooling Infrastructure Improvements at the KSU TRIGA Reactor Facility | Kansas State University | $175,153.00 | The KSU TRIGA Mark II Research Reactor will replace and upgrade cooling system components to increase operational reliability. | Reactor Upgrades | FY2024 | |
Operations and Utilization Improvements at the PSU Breazeale Reactor | Pennsylvania State University | $177,409.00 | Project is a set of infrastructure upgrades focused on improving utilization, reliability, and safety at the PSU Breazeale Reactor. Included in the project are a new console uninterruptible power supply, an ultrapure water source for radiochemistry, a digital signal analyzer for the emergency operations center HPGe detector, a new ion exchange vessel for the primary water system, and new in-core and beamline detectors for the rapid and repeatable measurement of neutron flux. | Reactor Upgrades | FY2024 | |
Reactor Effluent Analysis Instrumentation for Rhode Island Nuclear Science Center | Rhode Island Nuclear Science Center | $124,615.00 | The proposed project is to acquire a complete, new gamma spectroscopy system. | Reactor Upgrades | FY2024 | |
Linear Power Safety Channel Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $598,075.00 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace the 2 existing Linear Power monitoring Safety Channels amplifiers. | Reactor Upgrades | FY2024 | |
MURR Facility Access Control Upgrade | University of Missouri, Columbia | $378,255.00 | Proposal is to acquire hardware and software necessary to upgrade the MU Research ReactorÕs facility access control system to a more secure system to maintain facility protection and to meet increased demands from faculty and student researchers authorized to use various areas of the MURR facility. | Reactor Upgrades | FY2024 | |
Priority hardware replacement for the AGN-201M reactor at the University of New Mexico | University of New Mexico | $437,995.00 | The proposed effort will replace aging and degraded hardware in the UNM AGN-201M nuclear reactor, including original power supplies and reactor safety logic systems, improving reactor safety and reliability. | Reactor Upgrades | FY2024 | |
Continuous Air Monitor and Source Range Detection Upgrade for the University of Utah TRIGA Reactor | University of Utah | $96,440.00 | The objective of this proposal is to increase operational reliability for UUTR operations by providing redundancy for aging equipment necessary for reactor operation. | Reactor Upgrades | FY2024 | |
Infrastructure Enhancements in Support of Safety and Operational Reliability at the WSU TRIGA Reactor | Washington State University | $365,195.00 | Projects aim to replace the 62-year old obsolete overhead crane and add an underwater pool illumination system. Both are used in support of reactor maintenance, fuel inspections and movement, teaching, training, and research activities at the WSU Nuclear Science Center 1 MW TRIGA reactor. | Reactor Upgrades | FY2024 | |
High Tempurature Thermal Diffusivity Equipment for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $136,000 | Project seeks to upgrade the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) post-irradiation examination (PIE) facilities to better complement the irradiation capabilities and broaden our role as a Nuclear Science User Facilities (NSUF) partner. Our eventual goal is to enable the MITR to provide full irradiation and sample analysis capabilities, from the start to the end of NSUF projects. | General Scientific Infrastructure | FY2023 | |
High-speed X-ray Imaging System Under a Chemically Protected Environment for Advanced High-temperature Non-Water-Cooled Reactor Experiments | Pennsylvania State University | $326,898 | Pennsylvania State University seeks a high-speed X-ray imaging system under a chemically controlled atmosphere to study high-temperature advanced reactor coolants and the materials-environment interactions. The capability of imaging low radioactive liquids and solids using a high-energy X-ray beam, at a very high imaging rate, and under a chemically protective environment is currently not available in the Nuclear Energy Infrastructure Database. | General Scientific Infrastructure | FY2023 | |
Hot Isotatic Pressing (HIP) for Nuclear Fuels and Structural Materials | Purdue University | $258,750 | Purdue University seeks to expand the Nuclear Science User Facilities (NSUF) capabilities to include hot isostatic pressing (HIP) equipment to fabricate, densify, and/or process nuclear structural materials, nuclear fuels, radioactive waste, and radiation detectors. | General Scientific Infrastructure | FY2023 | |
A Molten Salt Training and Research Loop for Advanced Nuclear Reactors | North Carolina State University | $250,000 | North Carolina State University will procure a molten salt pumped loop and glove box for both cutting-edge R&D and laboratory training for upper-division undergraduate and graduate students. Future users of the salt loop will investigate a diversity of research topics that include fluid characterization, material corrosion, thermos-hydraulics, sensor development, and more. | General Scientific Infrastructure | FY2023 | |
Establishment of Hot Cell Irradiated Materials Micro and Nano-Mechanical Testing at the University of New Mexico | University of New Mexico | $209,305 | Project seeks to enhance the materials characterization capabilities at the University of New Mexico hot cell facilities through acquisition of a microhardness tester, an in situ SEM picoindenter, and a digital image correlation system. | General Scientific Infrastructure | FY2023 | |
Establishment of a Salt Characterization Facility at UNR | University of Nevada, Reno | $180,779 | Project seeks to obtain accessories for existing characterization tools to determine the composition of halide salts. Specifically, a double glovebox, an ELTRA combustion analyzer and a titrator. This facility along with existing characterization infrastructure at UNR will allow for complete characterization of the salt composition. | General Scientific Infrastructure | FY2023 | |
Develop a Thermophysical Lab for Environment-Sensitive Nuclear Materials at Oregon State Univeristy | Oregon State University | $249,885 | Project aims to enhance Oregon State University (OSU)Õs capabilities to handle and comprehensively characterize air- and water-sensitive nuclear materials, including (fuel-bearing) molten salts, liquid and solid metallic fuels, etc., by developing a THERmophysical and cheMical lab for envirOnment-sensitive NUCLEar mAteRials (The Thermonuclear lab). | General Scientific Infrastructure | FY2023 | |
Establishing a Nuclear Chemistry Core Facility at the University of Wyoming | University of Wyoming | $300,000 | University of Wyoming seeks to secure the necessary infrastructure to establish a nuclear chemistry core facility which will serve the research and teaching missions of the University of Wyoming. | General Scientific Infrastructure | FY2023 | |
An Extreme-Temperature Load Frame for Reduced Length Scale Experimentation to Support Nuclear Materials Research and Education | University of Utah | $244,942 | University of Utah seeks to acquire a turn-key Psylotech µTS testing system and furnace chambers to enable elevated temperature testing (up to 1600¡C) of reduced length scale specimens (dimensions from 10 µm to 10mm). | General Scientific Infrastructure | FY2023 | |
Advanced SMR Simulator to Reinforce Nuclear Engineering Infrastructure at Rensselaer | Rensselaer Polytechnic Institute | $250,000 | Project seeks to strengthen the research and educational capabilities of the Nuclear Engineering Program at RPI (developing the NuScale Energy Exploration (E2) Center and a digital control room). | General Scientific Infrastructure | FY2023 | |
NuScale SMR Energy Exploration Center for UNLV Engineering Program Education and Research | University of Nevada, Las Vegas | $250,000 | Project seeks to enhance the teaching and research capabilities of the Nuclear Engineering Program at the University of Nevada Las Vegas (UNLV). The project aims to acquire the NuScale Energy Exploration (E2) Center, a state-of-the-art full scope reactor simulator based on the NuScale small modular reactor (SMR). | General Scientific Infrastructure | FY2023 | |
Upgrades to the Maryland University Training Reactor Cooling and Neutron Activation Analysis Systems for Enhanced Operational Reliability and Capability | University of Maryland, College Park | $1,465,001 | University of Maryland, College Park will increase and restore the safety, operational availability, and experimental capabilities of the Maryland University Training Reactor. A complete overhaul of the Primary and Secondary Coolant Systems will enable the reactor to operate continuously at its full licensed power. The acquisition of a microbalance and fume hood will improve the sensitivities of the neutron activation analysis program. | Reactor Upgrades | FY2023 | |
Replacement if the Oregon State TRIGA Reactor Ventilation System | Oregon State University | $416,405 | Oregon State University will increase the reliability and safety of the operational condition of the Oregon State TRIGA¨ Reactor ventilation system. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research as well as material science. | Reactor Upgrades | FY2023 | |
Replacement and Upgrade of the Reactor Secondary Cooling Loop at the WSU 1 MW TRIGA Reactor | Washington State University | $740,121 | Wasington State University will enhance the continued operational reliability and efficiency of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by replacing and simultaneously upgrading the research reactor cooling system secondary loop with equipment sized appropriately for heat removal and operation during summer heat. | Reactor Upgrades | FY2023 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Cruicial Cooling System Components | The Ohio State University | $87,158 | The Ohio State University Research Reactor will update replacement/spare custom facility components to enhance the institutionsÕ availability to perform R&D. | Reactor Upgrades | FY2023 | |
Procurement of Spare Digital Recorders, Replacement Portal Monitor, and Pool Lighting System at the Missouri S&T Reactor | Missouri University of Science and Technology | $25,865 | Missouri University of Science and Technology will procure spare digital recorders for the MSTR control console, a new portal monitor, and a pool lighting system. These improvements will bolster facility safety and reliability. | Reactor Upgrades | FY2023 | |
Radiological Safety and Operational Reliability Enhancements at the Penn State Breazeale Reactor | Pennsylvania State University | $78,531 | Pennsylvania State University will purchase two Alpha/Beta Continuous Air Monitors (Mirion iCAM) to replace the several decades old AMS-3 units, two new hand, cuff, and foot surface contamination monitors, one for reactor bay and the other in the new reactor beam hall exit area, a spare control rod servo drive and motor mechanism. | Reactor Upgrades | FY2023 | |
University Research Reactor Upgrades Infrastructure Support for the MIT Research Reactor's Area Radiation Monitor System Upgrade | Massachusetts Institute of Technology | $898,769 | Massachusetts Institute of Technology will upgrade the reactor's area radiation monitor system to improve reactor safety, personnel safety and reactor radiological emergency preparedness by replacing and expanding the existing area radiation monitor system with updated technology and equipment. | Reactor Upgrades | FY2023 | |
Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor Phase II | Abilene Christian University | $292,770 | Abilene Christian University will provide $42,770 in cost match toÊexpand a new radioactive materials characterization capability in the Nuclear Energy eXperimental Testing (NEXT) Laboratory at Abilene Christian University. The new capability will provide real-time in situ characterization of molecular species in forced-flow molten salt systems using UV-Vis-IR spectroscopy and electrochemistry of salt and mass spectrometry of the off gas in a new radiological lab (>5mr/hr@30cm). | General Scientific Infrastructure | FY2022 | |
Advanced Raman Spectroscopy for Characterization of f-Element Coordination Chemistry and Multiphasic Nuclear Waste Forms | Clemson University | $244,767 | This project seeks to purchase a new Raman microscope for student and faculty research at Clemson University. The new Raman microscope will be dedicated to examination of the chemistry and structure of radioactive materials. | General Scientific Infrastructure | FY2022 | |
Microscale PIE Tools for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $156,249 | The MIT Nuclear Reactor Lab (NRL) seeks to purchase a Flash Differential Scanning Calorimeter, to enable a greatly increased scientific output from all materials used in the MIT reactor and throughout the NSUF network. The FlashDSC-2 allows thermal analysis up to 1000C, enabling the direct measurement of Wigner energy (radiation defects) for defect reaction analysis and quantification, which has major implications for correlating radiation effects from neutrons and ions. | General Scientific Infrastructure | FY2022 | |
SMR Full Scope Simulator for Upgrading the Ohio State University Nuclear Engineering Program Research and Education Infrastructure | The Ohio State University | $275,000 | The Ohio State University will provide $25,000 inÊcost matchÊto enhance the educational and research capabilities of the Nuclear Engineering Program at The Ohio State University (OSU) by upgrading the infrastructure related to advanced reactor risk, reliability, safety and security characterization and improvement, and in support of its NSUF in the form of OSUÕs Nuclear Reactor Laboratory. Risk, reliability, safety and security characterization will be enhanced through acquiring and installing NuScale's full scope simulator. | General Scientific Infrastructure | FY2022 | |
Reactor Simulator and Digital Control Room to Create New Paradigms for Nuclear Engineering Education and Research | University of Illinois at Urbana-Champaign | $317,500 | The University of Illinois at Urbana-Champaign will provide $67,500 inÊcost match to enhance the educational and research missions of the Department of Nuclear, Plasma, and Radiological Engineering (NPRE), as well as the research mission of DOE-NE, this project aims to acquire a nuclear reactor simulator and a versatile, configurable, and extensible digital control room. This simulator and digital control room will be used in undergraduate and graduate course work, in K-12 outreach efforts, and for research in several areas of importance to DOE-NE. | General Scientific Infrastructure | FY2022 | |
Scientific Infrastructure Support for Post Irradiation Examination of Materials at MURR | University of Missouri, Columbia | $225,933 | This proposal requests funding for equipment that will establish a core of materials characterization capabilities at the University of Missouri Research Reactor Center (MURR), and includes a Raman spectroscopy system, a microhardness tester, a micro test stand, a microscope and a digital image correlation system. | General Scientific Infrastructure | FY2022 | |
High-Temperature Thermomechanical Characterization of Nuclear Materials | University of Pittsburgh | $565,573 | The University of Pittsburgh will provide $315,574 inÊcost match toÊpurchase a Gleeble system equipped with extreme environmental capabilities to strengthen core nuclear capability in strategic thrust areas in fuel performance, additive manufacturing of nuclear components, and reactor materials at the University of Pittsburgh. | General Scientific Infrastructure | FY2022 | |
Construction of a Flexible Fast Flux Facility for Cross Section Measurement, Benchmarking, and Education | University of Tennessee at Knoxville | $319,306 | The University of Tennessee at Knoxville will provide $69,306 in cost matchÊto construct, license and operate a facility that can be used to measure nuclear physics properties in specific fast reactor flux specta. This project will deliver to the nation a Fast Flux Facility (FFF) that supports a variety of fast reactor designs including sodium, lead, and salt; through improved cross sections and neutronics codes for advanced reactor design and licensing. | General Scientific Infrastructure | FY2022 | |
Procurement of Spare Parts for Instrumentation Channels, Electronics Test Equipment, and Power Uprate Study at the Missouri S&T Reactor | Missouri University of Science and Technology | $172,157 | This project has three objectives: 1) to procure spare and replacement parts needed to maintain the reactorÕs safety and control systems, 2) to develop a suite of electronics test equipment that will provide researchers with the ability to study the performance of electronics under irradiation, and 3) to perform computational analyses needed as part of the process of requesting a power uprate. | Reactor Upgrades | FY2022 | |
Enhanced Safety, Operations, and Utilization Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $130,100 | The objective of this proposal is to provide the PULSTAR with essential safety, plant status monitoring, utilization, and radiation protection infrastructure upgrades that will ensure its continued safe and efficient operation currently and at 2-MWth. This infrastructure upgrade allows the facility to continue to meet the increasing needs of PULSTAR users, enhancing user experience, expansion into new facilities, and supports the institutional and national missions. | Reactor Upgrades | FY2022 | |
Enhancement of radiation safety, security, and research infrastructure at newly constructed Neutron Beam Hall at the Penn State Breazeale Nuclear Reactor | Pennsylvania State University | $364,240 | In this application, we seek funds for enhancement of radiation safety and security infrastructure for our new expanded beam hall, a triple neutron beam catcher for new cold neutron beamline, and a neutron beam cave for the beam bender and neutron chopper sections of the extended beam line for the SANS facility. The funds requested for this application will enable us to utilize the expanded beam hall safely and efficiently. | Reactor Upgrades | FY2022 | |
Reed College Reactor N.I. Power Monitoring Channels | Reed College | $543,400 | Reed College requests funding to primarily secure and secondarily extend the life of the safety system functions with new power monitoring channels at the console. Obsolete safety-critical signal conditioning of old channels puts the reactor at risk of indeterminate shut-down if not replaced by modern, well-supported technology. | Reactor Upgrades | FY2022 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Crucial Reactor Pool Components | The Ohio State University | $111,354 | The Ohio State University Research Reactor depends upon many old, custom components in and around the reactor pool for which there are no replacements. Failure of any of these would likely result in an extended downtime. We are requesting funding to obtain replacement/spare custom facility components to Òenhance the institutionsÕ availability to perform R&D that is relevant to DOE-NEÕs missionÓ by precluding a such a failure. | Reactor Upgrades | FY2022 | |
University of Florida Training Reactor Gaseous Effluent Monitoring in Support of Reactor Operations and Research Activities | University of Florida | $55,720 | We propose the procurement of new gas effluent monitoring systems that will enable the UFTR to offer an increased suite of capabilities including plume monitoring and source term-tracking. The proposed system redundancy will enable a significant improvement of reliability and availability. | Reactor Upgrades | FY2022 | |
Core Modifications to Ensure the Continued Safe and Reliable Operation of the Maryland University Training Reactor | University of Maryland, College Park | $171,956 | During the installation of lightly irradiated fuel bundles, reactor operators discovered that these new fuel bundles would not fit into the grid plate. It was determined that the original bundles were installed in the wrong orientation in 1974. To install the lightly irradiated fuel bundles, reactor operators will need to unload the current core and disassemble all fuel bundles for inspection. The fuel will then be re-assembled with new end adapters for installation in the correct orientation. | Reactor Upgrades | FY2022 | |
Operations and Radiation Safety Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $156,496 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace aging components associated with the area radiation monitoring system and the reactor instrumentation and control systems. In addition, a broad energy germanium detector will be acquired to provide radiological monitoring capabilities at the reactor facility. These acquisitions will provide reliability of reactor operations and improve radiation safety for staff, faculty, and students working at the reactor. | Reactor Upgrades | FY2022 | |
Replacement and Upgrades to MURRÕs Facility Electrical Transformer and Reactor Primary Coolant Pumps and Motors | University of Missouri, Columbia | $170,775 | Replacement of primary coolant pumps and a facility electrical transformer is a high priority, critically needed enhancement for the MURR Center in order to support academic programs at the University of Missouri (MU) and partnering schools, and maintain the facilityÕs ability to perform research supporting DOE-NEÕs research mission. | Reactor Upgrades | FY2022 | |
Upgrading the UT Austin Nuclear Engineering Teaching Laboratory Reactor Console and Instrumentation to Advance Nuclear Science and Engineering Research and Education | University of Texas at Austin | $792,101 | The objective of this project is to replace the original General Atomics (GA) integrated digital control and instrumentation system for the TRIGA Mark II nuclear reactor at the Nuclear Engineering Teaching Laboratory (NETL) of The University of Texas at Austin (UT) with a modern, reliable, enhanced and capable system to increase useable reactor power, eliminate the risk for catastrophic failure, and improve reactor safety. | Reactor Upgrades | FY2022 | |
Radiation Tolerant Inspection Camera at the University of Wisconsin Nuclear Reactor (UWNR) | University of Wisconsin-Madison | $55,495 | The specific objective of this proposal is to enhance safety and ensure regulatory compliance at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM) through the acquisition of a radiation tolerant underwater camera with pan, tilt, zoom (PTZ) capabilities. | Reactor Upgrades | FY2022 | |
Enhancing the Operational Reliability of the TRIGA Reactor at Washington State University Utilizing Back-Up Reactor Core Nuclear Instrumentation | Washington State University | $104,976 | The goal of this project is to enhance the continued operational reliability of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by procuring spare reactor power detectors to replace aging ex-core detectors and fabricating detector housings. | Reactor Upgrades | FY2022 | |
NEUP Project 21-25190: Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor | Abilene Christian University | $367,793 | _This project supports establishing new and unique real-time direct chemical analysis capabilities for molten salt systems, specifically adding Raman and gamma spectroscopies to the Abilene Christian University (ACU), the Nuclear Energy eXperimental Testing (NEXT) Lab molten salt and materials characterization tools._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25206: High-Speed Terahertz Scanning System for Additively Manufactured Ceramic Materials and Composites for TCR Core Materials | Alfred University | $90,000 | _This project supports procurement and installation of a custom-made high-speed terahertz (THz) dual scanner system that will demonstrate non-destructive imaging of AM ceramic materials and composites for TCR core application._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25188: High-Efficiency Electrochemical Test Facility for Corrosion and Hydrodynamic Analysis in Molten Salts | Brigham Young University | $180,269 | _This project advocates the purchase of rotating cylinder electrode (RCE) to provide high throughput testing of materials and measurement of physical properties in molten salts. The proposal suggests that the purchase will yield an "Intermediate" advance on current methods for interrogating corrosion in molten salts._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25233: CSU Accurate Neutron Dosimetry Research and Teaching Infrastructure | Colorado State University | $39,500 | _This project supports procuring a new and well-characterized set of neutron detectors (Bonner Spheres) and the ATTILA4MC computer code to provide additional neutron detection capacity and neutron spectroscopy capabilities. Primary utilization is to enhance student education and training in the area of neutron detection and dosimetry._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25109: Interrogating f-element-ligand Interactions by X-ray Absorption Spectroscopy | Florida International University | $302,826 | _This project promotes the purchase of analytical instruments, including an X-ray absorption spectrometer and a probe for NMR spectrometer, to enhance radiochemistry research._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25197: Ultrafast elemental depth profiling to enable high-throughput characterization of nuclear materials and fuels | Missouri University of Science and Technology | $304,724 | _This project will support the purchase of a pulsed radio frequency glow discharge optical emission spectrometer (GDOES), with the capability of ultrafast elemental depth profiling. Potential unique capability as a tool for high throughput compositional characterization of nuclear materials and fuels._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25130: High Resolution Scanning Acoustic Microscopy System for High Throughput Characterization of Materials and Nuclear fuels | North Carolina State University | $290,000 | _This project requests funding for the purchase of a state-of-the-art high resolution scanning acoustic microscopy system for in high throughput characterization of nuclear fuels, sensor materials, cladding materials, reactor structural materials and 3D printed components. This novel non-destructive characterization capability will enhance capabilities at a current NSUF partner institution providing a unique offering within NSUF NEID._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25148: Dedicated Infrastructure for In Situ Characterization of Structural Materials | State University of New York, Stony Brook | $204,327 | _This project supports procurement of a suite of equipment dedicated to characterizing radioactive materials. Microscale specimen preparation and property testing equipment is an area of significant need within the nuclear research complex._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25122: Infrastructure upgrades to the Texas A&M University Accelerator Laboratory | Texas A&M University | $246,418 | _This project will provide support to enhance Texas A&M Univ. Accelerator Laboratory, specifically (1) to increase the proton irradiation efficiency by one order of magnitude; (2) to offer the new capability of simultaneous proton ion irradiation and corrosion testing in molten salts related to molten salt reactor (MSR) applications; and (3) to develop the new capability of in-situ characterization of specimen thickness and elemental distributions during corrosion testing. The project will lead to a capability that is not duplicated at other facilities._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25126: Development of a Rapid Chemical Assessment Capability for In-Situ TEM Ion Irradiations | University of Michigan | $350,000 | _This project will support the acquisition and deployment of a Gatan GIF (Gatan Imaging Filter) Continuum ER system in the Michigan Ion Beam Laboratory (MIBL) ThermoFisher Tecnai TF30 scanning/transmission electron microscope (S/TEM) that is augmented to allow in situ dual ion beam irradiation. This purchase will result in a significant enhancement of the characterization capabilities of MIBL system, that will result in high-throughput experimental workflows including in-situ TEM ion irradiations._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25140: Neutron irradiation facility at the NSL | University of Notre Dame | _This project supports development of a neutron irradiation station (NIS) at the Nuclear Science Laboratory (NSL) at the University of Notre Dame (UND) providing a monoenergetic flux of neutrons in the energy range of a few keV to a few MeV produced via (p,n) or (a,n) reactions on low-Z target materials, such as Li and Be. Significant utilization is expected within both educational and R&D missions, with R&D utilization expanding from nuclear data to radiation effects studies. The capability will be hosted by NSF-supported facility with a significant postgraduate "hands-on" education program._ | General Scientific Infrastructure | FY2021 | ||
NEUP Project 21-25232: A dedicated facility for direct visualization of bubble dynamics in molten salts | University of Puerto Rico at Mayagez | $250,000 | _The proposed facility in this projects enables experiments to correlate bubbles and bubbles clusters size, dynamics, composition, terminal velocity, temperature, environmental pressure and composition and purity with their aerosol production at bursting, at temperatures from operating conditions up to 1000 ¡C. Unique capability for molten salts systems._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25238: A High-Temperature Mechanical Testing Platform for Accelerated, Parallelized, and Miniaturized Materials Qualification | University of Texas at El Paso | $250,000 | _This project requests funds forÊthe acquisition of an Instron 8862 servo-electric testing system with intelligent furnace control capable of high temperature quasi-static (tensile, creep, stress relaxation, etc.) and dynamic testing (low cycle fatigue, creep-fatigue, etc.)._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25241: Fuel Fabrication Line for Advanced Reactor Fuel Research, Development and Testing | University of Texas at San Antonio | $286,344 | _This project will support the fabrication and testing of advanced nuclear fuels and materials, specifically the development of the uranium-bearing compounds, alloys, and composites. Specific focus is the synthesis of novel samples of relevant fuel compounds, like uranium nitride (UN) and the fabrication of dense, uniform geometries (pellets) of these samples as well as fuel compounds such as namely uranium silicides, carbides, composite forms of these fuels, and metallic fuel alloys/ compounds._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25150: Instrumentation for Enhanced Safety, Utilization, and Operations Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $341,760 | _This project will upgrade and enhance the safety, operations, and utilization infrastructure at the PULSTAR reactor of North Carolina State University (NCSU); installation of modern reactor console instrumentation to support the continued safe and reliable operation of the PULSTAR reactor and installation of comprehensive and facility wide radiation protection and moisture/temperature sensor systems._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25227: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Ensuring Continued Operational Capacity | Oregon State University | $555,416 | This project will upgrade necessary spare items to ensure sustained operation without lengthy unplanned outages for the Oregon State University Mk II Oregon State TRIGA¨ Reactor (OSTR) at the Oregon State University Radiation Center._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25222: High-Temperature Molten Salt Irradiation and Examination Capability for the Penn State Breazeale Reactor | Pennsylvania State University | $179,715 | _This project will build and install a permanent, high-temperature, molten salt neutron irradiation and post-irradiation analysis capability at the Penn State Breazeale Reactor (PSBR)._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25228: Reed Research Reactor Compensated Ion Chamber Replacement | Reed College | $140,000 | _This project will improve reliability of the reactor program at Reed College byÊpurchasingÊa spare Compensated Ion Chamber (CIC) to monitor the reactor power. The CIC allows the reactor operator to monitor and control the reactor power._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25112: Enhancement of Availability of The Ohio State University Research Reactor for Supporting Research and Education | The Ohio State University | $73,539 | This project wil support replacement parts for essential OSU Research Reactor (OSURR) control-room equipment that has been in continuous service for decades; custom reactor protection system (RPS) modules for which the lab has no spares. | Reactor Upgrades | FY2021 | |
NEUP Project 21-25142: Safety and Reliability Enhancements for the UC Irvine TRIGA Reactor | University of California, Irvine | $74,950 | _This project will increase the reliability of the TRIGA reactor instrumentation and control systems, increase the radiation safety for experiments while expanding research capabilities, and improve the fuel surveillance and management program._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25213: Acquisition of an Automated Pneumatic Sample Transfer System for Neutron Irradiation at the University of Florida Training Reactor | University of Florida | $282,000 | _The University of Florida will acquire an automated pneumatic sample transfer system to be used for moving samples into the University of Florida Training Reactor for irradiation and transferring the samples to laboratories for experimental use._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25202: Advancing Radiation Detection Education at the Maryland University Training Reactor | University of Maryland, College Park | $208,140 | _This project will modernize the radiation safety equipment and radiation detection capabilities at the Maryland University Training Reactor._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25132: Development of Neutron Tomography at the University of Wisconsin Nuclear Reactor | University of Wisconsin-Madison | $222,294 | _This proposal will enhance nuclear energy-related research and development at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM). Proposal seeks to enhance the neutron radiography capabilities at the reactor, by acquiring a high-resolution detector, rotation stage, visualization software and a high-performance computer._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25215: Upgrade to the 1 MW TRIGA Research Reactor Pool Liner at WSU | Washington State University | $302,657 | _This project will enhance the safety, performance, and continued operational reliability of the WSU NSC 1.0 MW TRIGA conversion research reactor: 1) Restore the reactor tank concrete, which is in much need of repair, and 2) Replace the epoxy concrete tank liner with a modern, robust epoxy liner that has already been successfully utilized and in service at other reactor facilities._ | Reactor Upgrades | FY2021 | |
NEUP Project 20-21610: Enhancing Mechanical Testing Capabilities to Support High-throughput Nuclear Material Development | Auburn University | $210,398 | _The project seeks to enhance the advanced mechanical testing capabilities at Auburn University through the aquisition of two key instruments to further support its existing nuclear research and education programs, as well as advanced manufacturing. An integrated micro- and nano-indentation platform with high-temperature capability will be acquired to cover grain scale high-throughput mechanical evaluation. A digital image correlation system will also be acquired to develop a high-throughput macroscale mechanical testing procedure of the compositionally and microstructurally gradient tensile specimens to maximize neutron test efficiency. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19328: A 3D Metal Printer to Enable Innovations in Nuclear Materials and Sensors | Boise State University | $319,941 | _This project will establish the capability to additively manufacture metallic materials at the Center for Advanced Energy Studies and within the NSUF network. This capability will help advance cross-cutting research on additive manufacturing of nuclear materials and in-core sensors and will enable new educational opportunities to attract and train high-quality students for the next generation nuclear energy workforce. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21612: High-Speed Thermogravimetry Equipped with Mass Spectrometry for Thermodynamic and Kinetic Study of Nuclear Energy Materials | Clemson University | $228,237 | _The project will allow for the acquisition of a state-of-the-art thermal analysis infrastructure of a high-speed thermogravimetry equipped with online mass spectrometry, allowing for high-speed temperature variation and instantaneous, simultaneous, and accurate quantification of exit species. The rapid and accurate thermodynamic and kinetic study of nuclear energy materials and processes will result in a robust thermodynamic characterization hub for nuclear energy materials and processes. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21572: Development of an In-Situ Testing Laboratory for Research and Education of Very High Temperature Reactor Materials | North Carolina State University | $261,175 | _This project will allow for the development of a unique in-situ testing laboratory (ISTL) through acquisition of a scanning electron microscope (SEM) and installation of a miniature thermomechanical fatigue testing system inside the SEM. The proposed ISTL will give the research community unprecedented capability to perform nuclear research, educate next generation scientists, and develop a future NSUF program in studying real-time microstructure evolution of very high temperature reactor materials under realistic loading conditions. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21567: Development of a High Throughput Nuclear Materials Synthesis Laboratory | University of Michigan | $166,560 | This project will allow for the acquisition of equipment to establish rapid materials consolidation and modification to complement the already established facilities at the University of Michigan, including the world-class Michigan Ion Beam Laboratory (MIBL). Coupling both MIBL and the proposed facility in a single research effort will result in a new end-to-end high throughput nuclear materials discovery capability in a single institution. The resulting increase in capability will serve all nuclear energy supporting universities, national laboratories, and industry. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21628: Infrastructure Support for In-situ Transmission Electron Microscopy Examination of Structure, Composition and Defect Evolution of Irradiated Structural Materials at University of Nevada, Reno | University of Nevada, Reno | $343,147 | _The project will establish a new, in-situ, nano-scaled structure, composition and defects evolution examination infrastructure system for irradiated structural materials using the Hysitron PI-95 Transmission Electron Microscope (TEM) PicoIndenter, which is designed to work in conjunction with a state-of-art high resolution TEM. This system will allow in-situ characterization under mechanical strain in a variety of irradiated materials at the University of Nevada, Reno. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21603: Establishment of Remote Control High Temperature Mechanical Testing Facility in a Hot Cell at The University of New Mexico | University of New Mexico | $250,000 | _This project will establish a high temperature mechanical testing capability within the hot cell of Nuclear Engineering Department at the University of New Mexico that can be operated using the existing manipulators, allowing remote operation for testing radioactive specimens. Combined with the existing infrastructure, this capability will allow establishment ofÊmicrostructure-mechanical property relations in structural materials for nuclear applications. The facility will also help educate and train the next generation of nuclear scientists, engineers, and policy makers. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21614: High Temperature Thermophysical Properties of Nuclear Fuels and Materials | University of Pittsburgh | $300,000 | _This project will allow the acquisition of key equipment to strengthen the core nuclear capability in the strategic thrust area of instrumentation and measurements at the University of Pittsburgh. This will be accomplished through the purchase of a laser flash analyzer and a thermal mechanical analyzer as a tool suite for complete thermophysical property information, and to fill an infrastructure gap to enhance nuclear research and education. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21624: Ex-situ and In-situ Molten Salt Chemical Analysis Capabilities for the Development of Materials in Molten Salt Environments | University of Wisconsin-Madison | $263,000 | _The project will allow for the addition of a state-of-the-art laser induced breakdown spectroscopy system, which will complement the University of Wisconsin-Madison Nuclear Engineering program's molten salt researchÊcapabilitiesÊwith an ex-situ and in-situ chemical analysis characterization tool that can detect all impurities in the salt, even low-Z elements. With these additions, higher throughput analysis of alloys and salts for molten salt reactor applications would be developed and would accelerate material discoveries. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21609: A Customized Creep Frame to Enable High-Throughput Characterization of Creep Mechanism Maps | Utah State University | $160,000 | _This project will allow for the acquisition and installation of a custom creep testing frame with an environmental chamber which has been modified with windows to support camera-based strain measurements. The measurements obtained using the equipment will be used to study heterogeneous creep strain accumulation in nuclear materials, with applications geared towards light water reactor sustainability, accident tolerant fuels, and other important materials-related challenges in nuclear science and engineering._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19067: Laboratory-based High-Resolution X-ray Absorption and Emission Spectroscopy for Nuclear Science and Radiochemistry Research and Education | Washington State University | $287,450 | _This project will allow for the acquisition of a radiological laboratory-based high-resolution hard X-ray spectrometer that can perform both X-ray absorption spectroscopy and X-ray emission spectroscopy. This instrument will greatly upgrade the technical capability of the nuclear reactor facility at Washington State University (WSU) for nuclear-related and radiochemical research and teaching, allowing for enhancement of WSUÕs capacity to attract high quality students interested in nuclear science._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-20215: A New Control Rod Drive Mechanism Design for the ISU AGN-201M Reactor | Idaho State University | $59,262 | _The existing control rod drive mechanism of the Idaho State University's Aerojet General Nucleonics model 201-Modified reactor will be replaced with a new, reliable, alternative design to reduce the overall complexity and probability of failure and improve the overall reliability and safety of the reactor. With proper material selection and improved structural design, the new drives are lighter, with little to no change in structural integrity, and eliminate the binding scenarios by using a single lead screw and implementing additional guide rods. The new design ensures the reactorÕs long-term viability for educational and research activities and increases the reliability and safety of operation. | Reactor Upgrades | FY2020 | |
NEUP Project 20-20186: University Research Reactor Upgrades Infrastructure Support for the MIT Research ReactorÕs Normal and Emergency Electrical Power Supply Systems | Massachusetts Institute of Technology | $537,818 | _The existing emergency electrical power battery system at the Massachusetts Institute of Technology Research Reactor will be updated with new technology and equipment, enhancing emergency preparedness of the reactor facility by restoring the post-shutdown emergency power supply for at least eight hours. In addition, the two existing reactor motor control centers that provide normal electrical power to the reactor's main cooling pumps, building isolation equipment, instrumentation, and other necessary operational and safety equipment, will be updated to improve equipment reliability and enhance personnel electrical safety by using components that meet modern standards. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21634: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Increasing Material Science Capability | Oregon State University | $118,020 | _The TRIGA¨ Mk II Oregon State TRIGA¨ ReactorÊprogram will purchaseÊa liquid scintillation counter in order to increase utilization of the facility. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research, as well as materials science at Oregon State University and development relevant to the DOE._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21589: Underground Waste Storage Tanks Removal and Installation of New Above Ground Waste Storage Tanks and Waste Evaporator Pit at the Radiation Science and Engineering Center | Pennsylvania State University | $306,744 | _In order for the necessary construction of a new beam ball at the Penn State Breazeale Reactor, the antiquated underground storage tanks will be replaced with above ground water storage tanks within the expanded neutron beam hall space. This effort will allow progress to continue toward the goal of massively expanding the number of neutron experiment stations available to the Radiation Science and Engineering Center users._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21633: PUR-1 Water Processing and Cooling System Upgrade | Purdue University | $36,000 | _The heat exchanger and associated water process system of the Purdue University Reactor Number One will be replaced, in order to ensure the reactor's safe and continuous operation. This replacement will allow the Purdue UniversityÊReactorÊNumber One to reject 10 kW of reactor heat with nominal excess capacity and achieve steady state operations at the fully licensed power level with enhanced capacity, reliability, and safety. With this replacement, the facility will be able to access fluence required for meaningful research applications. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21571: Reactor Safety Control Component Upgrade | Rhode Island Nuclear Science Center | $477,000 | _The Rhode Island Nuclear Science Center's last remaining original components in the reactor controls system will be upgraded and the remaining components will be integrated into a configuration that not only enhances the reactor operatorÕs ability to operate the reactor safely, but also improves reliability, maintenance capability and longevity. By replacing the last of the vacuum tube based technology from the original installation with the Reactor Safety Control Components, the long term viability of the research reactor to support ongoing and future research projects and educational endeavors will be improved. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21621: Equipment Upgrades at University of Massachusetts Lowell Research Reactor (UMLRR) to enable neutron-induced reaction research. | University of Massachusetts, Lowell | $129,788 | _Equipment and the experimental infrastructure at the University of Massachusetts-Lowell Research Reactor will be upgraded, in order to ensure the safe and efficient operation of the reactor during the next 20 or more years of operations. A new control console that will ensure the safe and efficient operation, as well as upgrades to the experimental infrastructure of the facility, during the next 20 or more years of operations. The proposed control system upgrades will continue to enhance this ongoing educational development pathway._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21601: University of Missouri Research Reactor Beryllium Reflector Replacement | University of Missouri, Columbia | $585,013 | _The University of Missouri-Columbia Research Reactor's beryllium reflector will be replaced, due to the irradiation induced swelling from the neutron fluence and thermal induced tensile stress from radiation heating of the beryllium material. Replacing the reactorÕs beryllium reflector is a high priority and critical upgrade necessary for the continued safe and reliable operations of the reactor to support nuclear science and engineering students and faculty, as well as the facilityÕs extensive infrastructure supporting the research needs of the nuclear industry. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21593: Reactor Cooling System Upgrade for the University of Utah TRIGA Reactor | University of Utah | $487,387 | The cooling system of the Universty of Utah TRIGA reactor (UUTR) will be replaced to enhance performance and utility by allowing for the reactor to run for much longer periods at full power, increasing safety and operational reliability. Converting the cooling mechanism from a passive system to an active system will increase the cooling capacity by up to 1 MW thermal energy. This will allow for the UUTR to have much longer runtimes and higher daily neutron/gamma fluence, which will enhance the capability for a wide range of nuclear research and development efforts. | Reactor Upgrades | FY2020 |
FY 2020 Integrated Research Project Awards
The Department of Energy is awarding $10.8 million for three Integrated Research Projects (IRPs), which address well-defined but highly complex technical issues impacting key Office of Nuclear Energy (NE) mission objectives. IRPs are multi-million dollar, three-year projects executed by university-led consortiums that typically include multiple universities, industrial and international research entities, and the unique resources of the DOE National Laboratories. IRPs comprise a significant element of DOE’s innovative nuclear research objectives and illustrate NE’s strategy to pursue R&D solutions most directly relevant to the near-term, significant needs of the NE R&D programs.
IRP award recipients are listed below.
Title | Institution | Estimated Funding | Abstract | Project Description | Project Type | Fiscal Year |
---|---|---|---|---|---|---|
Spark plasma sintering for nuclear fuel and alloy fabrication at Massachusetts Institute of Technology | Massachusetts Institute of Technology | $290,875.00 | Massachusetts Institute of Technology will provide $40,875 cost share to acquire a state-of-the-art spark plasma sintering (SPS) set up to enhance educational and research capabilities in high throughput nuclear fuels, sensor materials, cladding materials, and reactor structural materials fabrication. Total estimated project cost $331,750. | General Scientific Infrastructure | FY2024 | |
High-Throughput Serial Sectioning of Nuclear Fuels, Materials, and Sensors | Purdue University | $299,869.00 | Purdue University will provide $49,869 cost share to acquire an automated, high-throughput serial sectioning instrument for three-dimensional characterization of nuclear fuels, materials, and sensors. Total estimated projected cost $349,738. | General Scientific Infrastructure | FY2024 | |
Simulating Nuclear Radiation Environments and Testing Capabilities for Electronics | University of Central Florida | $249,970.00 | Objective of the proposal is to develop an advanced capability for simulating and studying extreme environments with elevated radiation dose and high temperature conditions similar to that in nuclear facilities. | General Scientific Infrastructure | FY2024 | |
Development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Testing | University of Illinois at Urbana-Champaign | $263,806.00 | University of Illinois at Urbana-Champaign will provide $13,806 cost share for the development of High Temperature Environmental Testing Facilities for Advanced Reactor Materials Research. Total estimated project cost $277,612. | General Scientific Infrastructure | FY2024 | |
A High Current, High Energy Helium Beamline for Accelerated Nuclear Materials Development | University of Michigan | $409,826.00 | University of Michigan will provide $159,826 cost share to acquire and deploy a new high current helium ion source and corresponding beamline components at the Michigan Ion Beam Laboratory (MIBL) to form a new high current, high energy helium beamline to enable nuclear materials studies including in-situ helium effects in stressed specimen configurations. | General Scientific Infrastructure | FY2024 | |
Commissioning of an easyXAFS to Enable Understanding of Short Order Structure in Nuclear Materials | University of Nevada, Reno | $292,085.00 | University of Nevada, Reno will provide $42,085 cost share to purchase an easyXFAS system, a high resolution, hard X-ray monochromator for X-ray absorption spectroscopy (XAS) measurements. This instrument provides signal strengths approaching those from synchrotron-based XAS systems, and would enable easy analysis of radioactive samples and rapid iterations on experiments. Up to 33% of the time will be dedicated for external users. Innovative laboratory modules will be created showcasing the use of the facility. Total estimated project cost $334,170. | General Scientific Infrastructure | FY2024 | |
In situ Characterization of Transient Radioactive Compounds | University of Notre Dame | $247,056.00 | Project will add facilities at Notre Dame Radiation Laboratory for the handling of radioactive samples. | General Scientific Infrastructure | FY2024 | |
In situ ion irradiation testing facilities for the investigation of nuclear materials under mechanical and thermal extremes | University of Wisconsin-Madison | $339,671.00 | University of Wisconsin-Madison will provide $89,671 cost share and will establish two novel testing stations coupled to the University of WisconsinÐMadison (UW-M) Ion Beam Laboratory (IBL)Õs 1.7 MV Tandem accelerator. Total estimated project cost $429,342. | General Scientific Infrastructure | FY2024 | |
Novel Optical Spectroscopy System (NOSS) to Enhance VCU Advanced Materials Research and Education | Virginia Commonwealth University | $235,908.00 | Virginia Commonwealth University will develop a novel optical spectroscopy system to strengthen and enhance research & teaching capabilities for material characterization & analysis of advanced nuclear fuel and waste. | General Scientific Infrastructure | FY2024 | |
Establishing a Nuclear Science and Radiochemistry Instrumentation Hub for Education and Research at Washington State University | Washington State University | $266,063.00 | Washington State University will provide $16,064 cost share to enhance their nuclear science and radiochemistry research and education infrastructure with the purchase and installation of 1) a liquid scintillation counter with an alpha-beta separation package and 2) a mobile gamma spectrometer capable of measuring low energy gamma-rays (< 100 keV) and can be readily transported to teaching and research labs. Total estimated project cost $282,127. | General Scientific Infrastructure | FY2024 | |
Reactor Cooling Infrastructure Improvements at the KSU TRIGA Reactor Facility | Kansas State University | $175,153.00 | The KSU TRIGA Mark II Research Reactor will replace and upgrade cooling system components to increase operational reliability. | Reactor Upgrades | FY2024 | |
Operations and Utilization Improvements at the PSU Breazeale Reactor | Pennsylvania State University | $177,409.00 | Project is a set of infrastructure upgrades focused on improving utilization, reliability, and safety at the PSU Breazeale Reactor. Included in the project are a new console uninterruptible power supply, an ultrapure water source for radiochemistry, a digital signal analyzer for the emergency operations center HPGe detector, a new ion exchange vessel for the primary water system, and new in-core and beamline detectors for the rapid and repeatable measurement of neutron flux. | Reactor Upgrades | FY2024 | |
Reactor Effluent Analysis Instrumentation for Rhode Island Nuclear Science Center | Rhode Island Nuclear Science Center | $124,615.00 | The proposed project is to acquire a complete, new gamma spectroscopy system. | Reactor Upgrades | FY2024 | |
Linear Power Safety Channel Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $598,075.00 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace the 2 existing Linear Power monitoring Safety Channels amplifiers. | Reactor Upgrades | FY2024 | |
MURR Facility Access Control Upgrade | University of Missouri, Columbia | $378,255.00 | Proposal is to acquire hardware and software necessary to upgrade the MU Research ReactorÕs facility access control system to a more secure system to maintain facility protection and to meet increased demands from faculty and student researchers authorized to use various areas of the MURR facility. | Reactor Upgrades | FY2024 | |
Priority hardware replacement for the AGN-201M reactor at the University of New Mexico | University of New Mexico | $437,995.00 | The proposed effort will replace aging and degraded hardware in the UNM AGN-201M nuclear reactor, including original power supplies and reactor safety logic systems, improving reactor safety and reliability. | Reactor Upgrades | FY2024 | |
Continuous Air Monitor and Source Range Detection Upgrade for the University of Utah TRIGA Reactor | University of Utah | $96,440.00 | The objective of this proposal is to increase operational reliability for UUTR operations by providing redundancy for aging equipment necessary for reactor operation. | Reactor Upgrades | FY2024 | |
Infrastructure Enhancements in Support of Safety and Operational Reliability at the WSU TRIGA Reactor | Washington State University | $365,195.00 | Projects aim to replace the 62-year old obsolete overhead crane and add an underwater pool illumination system. Both are used in support of reactor maintenance, fuel inspections and movement, teaching, training, and research activities at the WSU Nuclear Science Center 1 MW TRIGA reactor. | Reactor Upgrades | FY2024 | |
High Tempurature Thermal Diffusivity Equipment for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $136,000 | Project seeks to upgrade the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) post-irradiation examination (PIE) facilities to better complement the irradiation capabilities and broaden our role as a Nuclear Science User Facilities (NSUF) partner. Our eventual goal is to enable the MITR to provide full irradiation and sample analysis capabilities, from the start to the end of NSUF projects. | General Scientific Infrastructure | FY2023 | |
High-speed X-ray Imaging System Under a Chemically Protected Environment for Advanced High-temperature Non-Water-Cooled Reactor Experiments | Pennsylvania State University | $326,898 | Pennsylvania State University seeks a high-speed X-ray imaging system under a chemically controlled atmosphere to study high-temperature advanced reactor coolants and the materials-environment interactions. The capability of imaging low radioactive liquids and solids using a high-energy X-ray beam, at a very high imaging rate, and under a chemically protective environment is currently not available in the Nuclear Energy Infrastructure Database. | General Scientific Infrastructure | FY2023 | |
Hot Isotatic Pressing (HIP) for Nuclear Fuels and Structural Materials | Purdue University | $258,750 | Purdue University seeks to expand the Nuclear Science User Facilities (NSUF) capabilities to include hot isostatic pressing (HIP) equipment to fabricate, densify, and/or process nuclear structural materials, nuclear fuels, radioactive waste, and radiation detectors. | General Scientific Infrastructure | FY2023 | |
A Molten Salt Training and Research Loop for Advanced Nuclear Reactors | North Carolina State University | $250,000 | North Carolina State University will procure a molten salt pumped loop and glove box for both cutting-edge R&D and laboratory training for upper-division undergraduate and graduate students. Future users of the salt loop will investigate a diversity of research topics that include fluid characterization, material corrosion, thermos-hydraulics, sensor development, and more. | General Scientific Infrastructure | FY2023 | |
Establishment of Hot Cell Irradiated Materials Micro and Nano-Mechanical Testing at the University of New Mexico | University of New Mexico | $209,305 | Project seeks to enhance the materials characterization capabilities at the University of New Mexico hot cell facilities through acquisition of a microhardness tester, an in situ SEM picoindenter, and a digital image correlation system. | General Scientific Infrastructure | FY2023 | |
Establishment of a Salt Characterization Facility at UNR | University of Nevada, Reno | $180,779 | Project seeks to obtain accessories for existing characterization tools to determine the composition of halide salts. Specifically, a double glovebox, an ELTRA combustion analyzer and a titrator. This facility along with existing characterization infrastructure at UNR will allow for complete characterization of the salt composition. | General Scientific Infrastructure | FY2023 | |
Develop a Thermophysical Lab for Environment-Sensitive Nuclear Materials at Oregon State Univeristy | Oregon State University | $249,885 | Project aims to enhance Oregon State University (OSU)Õs capabilities to handle and comprehensively characterize air- and water-sensitive nuclear materials, including (fuel-bearing) molten salts, liquid and solid metallic fuels, etc., by developing a THERmophysical and cheMical lab for envirOnment-sensitive NUCLEar mAteRials (The Thermonuclear lab). | General Scientific Infrastructure | FY2023 | |
Establishing a Nuclear Chemistry Core Facility at the University of Wyoming | University of Wyoming | $300,000 | University of Wyoming seeks to secure the necessary infrastructure to establish a nuclear chemistry core facility which will serve the research and teaching missions of the University of Wyoming. | General Scientific Infrastructure | FY2023 | |
An Extreme-Temperature Load Frame for Reduced Length Scale Experimentation to Support Nuclear Materials Research and Education | University of Utah | $244,942 | University of Utah seeks to acquire a turn-key Psylotech µTS testing system and furnace chambers to enable elevated temperature testing (up to 1600¡C) of reduced length scale specimens (dimensions from 10 µm to 10mm). | General Scientific Infrastructure | FY2023 | |
Advanced SMR Simulator to Reinforce Nuclear Engineering Infrastructure at Rensselaer | Rensselaer Polytechnic Institute | $250,000 | Project seeks to strengthen the research and educational capabilities of the Nuclear Engineering Program at RPI (developing the NuScale Energy Exploration (E2) Center and a digital control room). | General Scientific Infrastructure | FY2023 | |
NuScale SMR Energy Exploration Center for UNLV Engineering Program Education and Research | University of Nevada, Las Vegas | $250,000 | Project seeks to enhance the teaching and research capabilities of the Nuclear Engineering Program at the University of Nevada Las Vegas (UNLV). The project aims to acquire the NuScale Energy Exploration (E2) Center, a state-of-the-art full scope reactor simulator based on the NuScale small modular reactor (SMR). | General Scientific Infrastructure | FY2023 | |
Upgrades to the Maryland University Training Reactor Cooling and Neutron Activation Analysis Systems for Enhanced Operational Reliability and Capability | University of Maryland, College Park | $1,465,001 | University of Maryland, College Park will increase and restore the safety, operational availability, and experimental capabilities of the Maryland University Training Reactor. A complete overhaul of the Primary and Secondary Coolant Systems will enable the reactor to operate continuously at its full licensed power. The acquisition of a microbalance and fume hood will improve the sensitivities of the neutron activation analysis program. | Reactor Upgrades | FY2023 | |
Replacement if the Oregon State TRIGA Reactor Ventilation System | Oregon State University | $416,405 | Oregon State University will increase the reliability and safety of the operational condition of the Oregon State TRIGA¨ Reactor ventilation system. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research as well as material science. | Reactor Upgrades | FY2023 | |
Replacement and Upgrade of the Reactor Secondary Cooling Loop at the WSU 1 MW TRIGA Reactor | Washington State University | $740,121 | Wasington State University will enhance the continued operational reliability and efficiency of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by replacing and simultaneously upgrading the research reactor cooling system secondary loop with equipment sized appropriately for heat removal and operation during summer heat. | Reactor Upgrades | FY2023 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Cruicial Cooling System Components | The Ohio State University | $87,158 | The Ohio State University Research Reactor will update replacement/spare custom facility components to enhance the institutionsÕ availability to perform R&D. | Reactor Upgrades | FY2023 | |
Procurement of Spare Digital Recorders, Replacement Portal Monitor, and Pool Lighting System at the Missouri S&T Reactor | Missouri University of Science and Technology | $25,865 | Missouri University of Science and Technology will procure spare digital recorders for the MSTR control console, a new portal monitor, and a pool lighting system. These improvements will bolster facility safety and reliability. | Reactor Upgrades | FY2023 | |
Radiological Safety and Operational Reliability Enhancements at the Penn State Breazeale Reactor | Pennsylvania State University | $78,531 | Pennsylvania State University will purchase two Alpha/Beta Continuous Air Monitors (Mirion iCAM) to replace the several decades old AMS-3 units, two new hand, cuff, and foot surface contamination monitors, one for reactor bay and the other in the new reactor beam hall exit area, a spare control rod servo drive and motor mechanism. | Reactor Upgrades | FY2023 | |
University Research Reactor Upgrades Infrastructure Support for the MIT Research Reactor's Area Radiation Monitor System Upgrade | Massachusetts Institute of Technology | $898,769 | Massachusetts Institute of Technology will upgrade the reactor's area radiation monitor system to improve reactor safety, personnel safety and reactor radiological emergency preparedness by replacing and expanding the existing area radiation monitor system with updated technology and equipment. | Reactor Upgrades | FY2023 | |
Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor Phase II | Abilene Christian University | $292,770 | Abilene Christian University will provide $42,770 in cost match toÊexpand a new radioactive materials characterization capability in the Nuclear Energy eXperimental Testing (NEXT) Laboratory at Abilene Christian University. The new capability will provide real-time in situ characterization of molecular species in forced-flow molten salt systems using UV-Vis-IR spectroscopy and electrochemistry of salt and mass spectrometry of the off gas in a new radiological lab (>5mr/hr@30cm). | General Scientific Infrastructure | FY2022 | |
Advanced Raman Spectroscopy for Characterization of f-Element Coordination Chemistry and Multiphasic Nuclear Waste Forms | Clemson University | $244,767 | This project seeks to purchase a new Raman microscope for student and faculty research at Clemson University. The new Raman microscope will be dedicated to examination of the chemistry and structure of radioactive materials. | General Scientific Infrastructure | FY2022 | |
Microscale PIE Tools for Expanding the Scientific Impact of the MIT Reactor | Massachusetts Institute of Technology | $156,249 | The MIT Nuclear Reactor Lab (NRL) seeks to purchase a Flash Differential Scanning Calorimeter, to enable a greatly increased scientific output from all materials used in the MIT reactor and throughout the NSUF network. The FlashDSC-2 allows thermal analysis up to 1000C, enabling the direct measurement of Wigner energy (radiation defects) for defect reaction analysis and quantification, which has major implications for correlating radiation effects from neutrons and ions. | General Scientific Infrastructure | FY2022 | |
SMR Full Scope Simulator for Upgrading the Ohio State University Nuclear Engineering Program Research and Education Infrastructure | The Ohio State University | $275,000 | The Ohio State University will provide $25,000 inÊcost matchÊto enhance the educational and research capabilities of the Nuclear Engineering Program at The Ohio State University (OSU) by upgrading the infrastructure related to advanced reactor risk, reliability, safety and security characterization and improvement, and in support of its NSUF in the form of OSUÕs Nuclear Reactor Laboratory. Risk, reliability, safety and security characterization will be enhanced through acquiring and installing NuScale's full scope simulator. | General Scientific Infrastructure | FY2022 | |
Reactor Simulator and Digital Control Room to Create New Paradigms for Nuclear Engineering Education and Research | University of Illinois at Urbana-Champaign | $317,500 | The University of Illinois at Urbana-Champaign will provide $67,500 inÊcost match to enhance the educational and research missions of the Department of Nuclear, Plasma, and Radiological Engineering (NPRE), as well as the research mission of DOE-NE, this project aims to acquire a nuclear reactor simulator and a versatile, configurable, and extensible digital control room. This simulator and digital control room will be used in undergraduate and graduate course work, in K-12 outreach efforts, and for research in several areas of importance to DOE-NE. | General Scientific Infrastructure | FY2022 | |
Scientific Infrastructure Support for Post Irradiation Examination of Materials at MURR | University of Missouri, Columbia | $225,933 | This proposal requests funding for equipment that will establish a core of materials characterization capabilities at the University of Missouri Research Reactor Center (MURR), and includes a Raman spectroscopy system, a microhardness tester, a micro test stand, a microscope and a digital image correlation system. | General Scientific Infrastructure | FY2022 | |
High-Temperature Thermomechanical Characterization of Nuclear Materials | University of Pittsburgh | $565,573 | The University of Pittsburgh will provide $315,574 inÊcost match toÊpurchase a Gleeble system equipped with extreme environmental capabilities to strengthen core nuclear capability in strategic thrust areas in fuel performance, additive manufacturing of nuclear components, and reactor materials at the University of Pittsburgh. | General Scientific Infrastructure | FY2022 | |
Construction of a Flexible Fast Flux Facility for Cross Section Measurement, Benchmarking, and Education | University of Tennessee at Knoxville | $319,306 | The University of Tennessee at Knoxville will provide $69,306 in cost matchÊto construct, license and operate a facility that can be used to measure nuclear physics properties in specific fast reactor flux specta. This project will deliver to the nation a Fast Flux Facility (FFF) that supports a variety of fast reactor designs including sodium, lead, and salt; through improved cross sections and neutronics codes for advanced reactor design and licensing. | General Scientific Infrastructure | FY2022 | |
Procurement of Spare Parts for Instrumentation Channels, Electronics Test Equipment, and Power Uprate Study at the Missouri S&T Reactor | Missouri University of Science and Technology | $172,157 | This project has three objectives: 1) to procure spare and replacement parts needed to maintain the reactorÕs safety and control systems, 2) to develop a suite of electronics test equipment that will provide researchers with the ability to study the performance of electronics under irradiation, and 3) to perform computational analyses needed as part of the process of requesting a power uprate. | Reactor Upgrades | FY2022 | |
Enhanced Safety, Operations, and Utilization Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $130,100 | The objective of this proposal is to provide the PULSTAR with essential safety, plant status monitoring, utilization, and radiation protection infrastructure upgrades that will ensure its continued safe and efficient operation currently and at 2-MWth. This infrastructure upgrade allows the facility to continue to meet the increasing needs of PULSTAR users, enhancing user experience, expansion into new facilities, and supports the institutional and national missions. | Reactor Upgrades | FY2022 | |
Enhancement of radiation safety, security, and research infrastructure at newly constructed Neutron Beam Hall at the Penn State Breazeale Nuclear Reactor | Pennsylvania State University | $364,240 | In this application, we seek funds for enhancement of radiation safety and security infrastructure for our new expanded beam hall, a triple neutron beam catcher for new cold neutron beamline, and a neutron beam cave for the beam bender and neutron chopper sections of the extended beam line for the SANS facility. The funds requested for this application will enable us to utilize the expanded beam hall safely and efficiently. | Reactor Upgrades | FY2022 | |
Reed College Reactor N.I. Power Monitoring Channels | Reed College | $543,400 | Reed College requests funding to primarily secure and secondarily extend the life of the safety system functions with new power monitoring channels at the console. Obsolete safety-critical signal conditioning of old channels puts the reactor at risk of indeterminate shut-down if not replaced by modern, well-supported technology. | Reactor Upgrades | FY2022 | |
Maximizing Long-Term Availability of The Ohio State University Research Reactor for Supporting Research and Education via Replacement Equipment for Crucial Reactor Pool Components | The Ohio State University | $111,354 | The Ohio State University Research Reactor depends upon many old, custom components in and around the reactor pool for which there are no replacements. Failure of any of these would likely result in an extended downtime. We are requesting funding to obtain replacement/spare custom facility components to Òenhance the institutionsÕ availability to perform R&D that is relevant to DOE-NEÕs missionÓ by precluding a such a failure. | Reactor Upgrades | FY2022 | |
University of Florida Training Reactor Gaseous Effluent Monitoring in Support of Reactor Operations and Research Activities | University of Florida | $55,720 | We propose the procurement of new gas effluent monitoring systems that will enable the UFTR to offer an increased suite of capabilities including plume monitoring and source term-tracking. The proposed system redundancy will enable a significant improvement of reliability and availability. | Reactor Upgrades | FY2022 | |
Core Modifications to Ensure the Continued Safe and Reliable Operation of the Maryland University Training Reactor | University of Maryland, College Park | $171,956 | During the installation of lightly irradiated fuel bundles, reactor operators discovered that these new fuel bundles would not fit into the grid plate. It was determined that the original bundles were installed in the wrong orientation in 1974. To install the lightly irradiated fuel bundles, reactor operators will need to unload the current core and disassemble all fuel bundles for inspection. The fuel will then be re-assembled with new end adapters for installation in the correct orientation. | Reactor Upgrades | FY2022 | |
Operations and Radiation Safety Upgrades for the University of Massachusetts Lowell Research Reactor | University of Massachusetts, Lowell | $156,496 | The University of Massachusetts Lowell Research Reactor (UMLRR) will replace aging components associated with the area radiation monitoring system and the reactor instrumentation and control systems. In addition, a broad energy germanium detector will be acquired to provide radiological monitoring capabilities at the reactor facility. These acquisitions will provide reliability of reactor operations and improve radiation safety for staff, faculty, and students working at the reactor. | Reactor Upgrades | FY2022 | |
Replacement and Upgrades to MURRÕs Facility Electrical Transformer and Reactor Primary Coolant Pumps and Motors | University of Missouri, Columbia | $170,775 | Replacement of primary coolant pumps and a facility electrical transformer is a high priority, critically needed enhancement for the MURR Center in order to support academic programs at the University of Missouri (MU) and partnering schools, and maintain the facilityÕs ability to perform research supporting DOE-NEÕs research mission. | Reactor Upgrades | FY2022 | |
Upgrading the UT Austin Nuclear Engineering Teaching Laboratory Reactor Console and Instrumentation to Advance Nuclear Science and Engineering Research and Education | University of Texas at Austin | $792,101 | The objective of this project is to replace the original General Atomics (GA) integrated digital control and instrumentation system for the TRIGA Mark II nuclear reactor at the Nuclear Engineering Teaching Laboratory (NETL) of The University of Texas at Austin (UT) with a modern, reliable, enhanced and capable system to increase useable reactor power, eliminate the risk for catastrophic failure, and improve reactor safety. | Reactor Upgrades | FY2022 | |
Radiation Tolerant Inspection Camera at the University of Wisconsin Nuclear Reactor (UWNR) | University of Wisconsin-Madison | $55,495 | The specific objective of this proposal is to enhance safety and ensure regulatory compliance at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM) through the acquisition of a radiation tolerant underwater camera with pan, tilt, zoom (PTZ) capabilities. | Reactor Upgrades | FY2022 | |
Enhancing the Operational Reliability of the TRIGA Reactor at Washington State University Utilizing Back-Up Reactor Core Nuclear Instrumentation | Washington State University | $104,976 | The goal of this project is to enhance the continued operational reliability of the WSU Nuclear Science Center 1.0 MW TRIGA conversion research reactor by procuring spare reactor power detectors to replace aging ex-core detectors and fabricating detector housings. | Reactor Upgrades | FY2022 | |
NEUP Project 21-25190: Real-Time In Situ Characterization of Molecular and Complex Ionic Species in Forced-Flow Molten Salt Loops and a Molten Salt Research Reactor | Abilene Christian University | $367,793 | _This project supports establishing new and unique real-time direct chemical analysis capabilities for molten salt systems, specifically adding Raman and gamma spectroscopies to the Abilene Christian University (ACU), the Nuclear Energy eXperimental Testing (NEXT) Lab molten salt and materials characterization tools._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25206: High-Speed Terahertz Scanning System for Additively Manufactured Ceramic Materials and Composites for TCR Core Materials | Alfred University | $90,000 | _This project supports procurement and installation of a custom-made high-speed terahertz (THz) dual scanner system that will demonstrate non-destructive imaging of AM ceramic materials and composites for TCR core application._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25188: High-Efficiency Electrochemical Test Facility for Corrosion and Hydrodynamic Analysis in Molten Salts | Brigham Young University | $180,269 | _This project advocates the purchase of rotating cylinder electrode (RCE) to provide high throughput testing of materials and measurement of physical properties in molten salts. The proposal suggests that the purchase will yield an "Intermediate" advance on current methods for interrogating corrosion in molten salts._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25233: CSU Accurate Neutron Dosimetry Research and Teaching Infrastructure | Colorado State University | $39,500 | _This project supports procuring a new and well-characterized set of neutron detectors (Bonner Spheres) and the ATTILA4MC computer code to provide additional neutron detection capacity and neutron spectroscopy capabilities. Primary utilization is to enhance student education and training in the area of neutron detection and dosimetry._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25109: Interrogating f-element-ligand Interactions by X-ray Absorption Spectroscopy | Florida International University | $302,826 | _This project promotes the purchase of analytical instruments, including an X-ray absorption spectrometer and a probe for NMR spectrometer, to enhance radiochemistry research._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25197: Ultrafast elemental depth profiling to enable high-throughput characterization of nuclear materials and fuels | Missouri University of Science and Technology | $304,724 | _This project will support the purchase of a pulsed radio frequency glow discharge optical emission spectrometer (GDOES), with the capability of ultrafast elemental depth profiling. Potential unique capability as a tool for high throughput compositional characterization of nuclear materials and fuels._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25130: High Resolution Scanning Acoustic Microscopy System for High Throughput Characterization of Materials and Nuclear fuels | North Carolina State University | $290,000 | _This project requests funding for the purchase of a state-of-the-art high resolution scanning acoustic microscopy system for in high throughput characterization of nuclear fuels, sensor materials, cladding materials, reactor structural materials and 3D printed components. This novel non-destructive characterization capability will enhance capabilities at a current NSUF partner institution providing a unique offering within NSUF NEID._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25148: Dedicated Infrastructure for In Situ Characterization of Structural Materials | State University of New York, Stony Brook | $204,327 | _This project supports procurement of a suite of equipment dedicated to characterizing radioactive materials. Microscale specimen preparation and property testing equipment is an area of significant need within the nuclear research complex._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25122: Infrastructure upgrades to the Texas A&M University Accelerator Laboratory | Texas A&M University | $246,418 | _This project will provide support to enhance Texas A&M Univ. Accelerator Laboratory, specifically (1) to increase the proton irradiation efficiency by one order of magnitude; (2) to offer the new capability of simultaneous proton ion irradiation and corrosion testing in molten salts related to molten salt reactor (MSR) applications; and (3) to develop the new capability of in-situ characterization of specimen thickness and elemental distributions during corrosion testing. The project will lead to a capability that is not duplicated at other facilities._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25126: Development of a Rapid Chemical Assessment Capability for In-Situ TEM Ion Irradiations | University of Michigan | $350,000 | _This project will support the acquisition and deployment of a Gatan GIF (Gatan Imaging Filter) Continuum ER system in the Michigan Ion Beam Laboratory (MIBL) ThermoFisher Tecnai TF30 scanning/transmission electron microscope (S/TEM) that is augmented to allow in situ dual ion beam irradiation. This purchase will result in a significant enhancement of the characterization capabilities of MIBL system, that will result in high-throughput experimental workflows including in-situ TEM ion irradiations._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25140: Neutron irradiation facility at the NSL | University of Notre Dame | _This project supports development of a neutron irradiation station (NIS) at the Nuclear Science Laboratory (NSL) at the University of Notre Dame (UND) providing a monoenergetic flux of neutrons in the energy range of a few keV to a few MeV produced via (p,n) or (a,n) reactions on low-Z target materials, such as Li and Be. Significant utilization is expected within both educational and R&D missions, with R&D utilization expanding from nuclear data to radiation effects studies. The capability will be hosted by NSF-supported facility with a significant postgraduate "hands-on" education program._ | General Scientific Infrastructure | FY2021 | ||
NEUP Project 21-25232: A dedicated facility for direct visualization of bubble dynamics in molten salts | University of Puerto Rico at Mayagez | $250,000 | _The proposed facility in this projects enables experiments to correlate bubbles and bubbles clusters size, dynamics, composition, terminal velocity, temperature, environmental pressure and composition and purity with their aerosol production at bursting, at temperatures from operating conditions up to 1000 ¡C. Unique capability for molten salts systems._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25238: A High-Temperature Mechanical Testing Platform for Accelerated, Parallelized, and Miniaturized Materials Qualification | University of Texas at El Paso | $250,000 | _This project requests funds forÊthe acquisition of an Instron 8862 servo-electric testing system with intelligent furnace control capable of high temperature quasi-static (tensile, creep, stress relaxation, etc.) and dynamic testing (low cycle fatigue, creep-fatigue, etc.)._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25241: Fuel Fabrication Line for Advanced Reactor Fuel Research, Development and Testing | University of Texas at San Antonio | $286,344 | _This project will support the fabrication and testing of advanced nuclear fuels and materials, specifically the development of the uranium-bearing compounds, alloys, and composites. Specific focus is the synthesis of novel samples of relevant fuel compounds, like uranium nitride (UN) and the fabrication of dense, uniform geometries (pellets) of these samples as well as fuel compounds such as namely uranium silicides, carbides, composite forms of these fuels, and metallic fuel alloys/ compounds._ | General Scientific Infrastructure | FY2021 | |
NEUP Project 21-25150: Instrumentation for Enhanced Safety, Utilization, and Operations Infrastructure at the NCSU PULSTAR Reactor | North Carolina State University | $341,760 | _This project will upgrade and enhance the safety, operations, and utilization infrastructure at the PULSTAR reactor of North Carolina State University (NCSU); installation of modern reactor console instrumentation to support the continued safe and reliable operation of the PULSTAR reactor and installation of comprehensive and facility wide radiation protection and moisture/temperature sensor systems._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25227: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Ensuring Continued Operational Capacity | Oregon State University | $555,416 | This project will upgrade necessary spare items to ensure sustained operation without lengthy unplanned outages for the Oregon State University Mk II Oregon State TRIGA¨ Reactor (OSTR) at the Oregon State University Radiation Center._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25222: High-Temperature Molten Salt Irradiation and Examination Capability for the Penn State Breazeale Reactor | Pennsylvania State University | $179,715 | _This project will build and install a permanent, high-temperature, molten salt neutron irradiation and post-irradiation analysis capability at the Penn State Breazeale Reactor (PSBR)._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25228: Reed Research Reactor Compensated Ion Chamber Replacement | Reed College | $140,000 | _This project will improve reliability of the reactor program at Reed College byÊpurchasingÊa spare Compensated Ion Chamber (CIC) to monitor the reactor power. The CIC allows the reactor operator to monitor and control the reactor power._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25112: Enhancement of Availability of The Ohio State University Research Reactor for Supporting Research and Education | The Ohio State University | $73,539 | This project wil support replacement parts for essential OSU Research Reactor (OSURR) control-room equipment that has been in continuous service for decades; custom reactor protection system (RPS) modules for which the lab has no spares. | Reactor Upgrades | FY2021 | |
NEUP Project 21-25142: Safety and Reliability Enhancements for the UC Irvine TRIGA Reactor | University of California, Irvine | $74,950 | _This project will increase the reliability of the TRIGA reactor instrumentation and control systems, increase the radiation safety for experiments while expanding research capabilities, and improve the fuel surveillance and management program._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25213: Acquisition of an Automated Pneumatic Sample Transfer System for Neutron Irradiation at the University of Florida Training Reactor | University of Florida | $282,000 | _The University of Florida will acquire an automated pneumatic sample transfer system to be used for moving samples into the University of Florida Training Reactor for irradiation and transferring the samples to laboratories for experimental use._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25202: Advancing Radiation Detection Education at the Maryland University Training Reactor | University of Maryland, College Park | $208,140 | _This project will modernize the radiation safety equipment and radiation detection capabilities at the Maryland University Training Reactor._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25132: Development of Neutron Tomography at the University of Wisconsin Nuclear Reactor | University of Wisconsin-Madison | $222,294 | _This proposal will enhance nuclear energy-related research and development at the University of Wisconsin Nuclear Reactor (UWNR) and associated Characterization Laboratory for Irradiated Materials (CLIM). Proposal seeks to enhance the neutron radiography capabilities at the reactor, by acquiring a high-resolution detector, rotation stage, visualization software and a high-performance computer._ | Reactor Upgrades | FY2021 | |
NEUP Project 21-25215: Upgrade to the 1 MW TRIGA Research Reactor Pool Liner at WSU | Washington State University | $302,657 | _This project will enhance the safety, performance, and continued operational reliability of the WSU NSC 1.0 MW TRIGA conversion research reactor: 1) Restore the reactor tank concrete, which is in much need of repair, and 2) Replace the epoxy concrete tank liner with a modern, robust epoxy liner that has already been successfully utilized and in service at other reactor facilities._ | Reactor Upgrades | FY2021 | |
NEUP Project 20-21610: Enhancing Mechanical Testing Capabilities to Support High-throughput Nuclear Material Development | Auburn University | $210,398 | _The project seeks to enhance the advanced mechanical testing capabilities at Auburn University through the aquisition of two key instruments to further support its existing nuclear research and education programs, as well as advanced manufacturing. An integrated micro- and nano-indentation platform with high-temperature capability will be acquired to cover grain scale high-throughput mechanical evaluation. A digital image correlation system will also be acquired to develop a high-throughput macroscale mechanical testing procedure of the compositionally and microstructurally gradient tensile specimens to maximize neutron test efficiency. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19328: A 3D Metal Printer to Enable Innovations in Nuclear Materials and Sensors | Boise State University | $319,941 | _This project will establish the capability to additively manufacture metallic materials at the Center for Advanced Energy Studies and within the NSUF network. This capability will help advance cross-cutting research on additive manufacturing of nuclear materials and in-core sensors and will enable new educational opportunities to attract and train high-quality students for the next generation nuclear energy workforce. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21612: High-Speed Thermogravimetry Equipped with Mass Spectrometry for Thermodynamic and Kinetic Study of Nuclear Energy Materials | Clemson University | $228,237 | _The project will allow for the acquisition of a state-of-the-art thermal analysis infrastructure of a high-speed thermogravimetry equipped with online mass spectrometry, allowing for high-speed temperature variation and instantaneous, simultaneous, and accurate quantification of exit species. The rapid and accurate thermodynamic and kinetic study of nuclear energy materials and processes will result in a robust thermodynamic characterization hub for nuclear energy materials and processes. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21572: Development of an In-Situ Testing Laboratory for Research and Education of Very High Temperature Reactor Materials | North Carolina State University | $261,175 | _This project will allow for the development of a unique in-situ testing laboratory (ISTL) through acquisition of a scanning electron microscope (SEM) and installation of a miniature thermomechanical fatigue testing system inside the SEM. The proposed ISTL will give the research community unprecedented capability to perform nuclear research, educate next generation scientists, and develop a future NSUF program in studying real-time microstructure evolution of very high temperature reactor materials under realistic loading conditions. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21567: Development of a High Throughput Nuclear Materials Synthesis Laboratory | University of Michigan | $166,560 | This project will allow for the acquisition of equipment to establish rapid materials consolidation and modification to complement the already established facilities at the University of Michigan, including the world-class Michigan Ion Beam Laboratory (MIBL). Coupling both MIBL and the proposed facility in a single research effort will result in a new end-to-end high throughput nuclear materials discovery capability in a single institution. The resulting increase in capability will serve all nuclear energy supporting universities, national laboratories, and industry. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21628: Infrastructure Support for In-situ Transmission Electron Microscopy Examination of Structure, Composition and Defect Evolution of Irradiated Structural Materials at University of Nevada, Reno | University of Nevada, Reno | $343,147 | _The project will establish a new, in-situ, nano-scaled structure, composition and defects evolution examination infrastructure system for irradiated structural materials using the Hysitron PI-95 Transmission Electron Microscope (TEM) PicoIndenter, which is designed to work in conjunction with a state-of-art high resolution TEM. This system will allow in-situ characterization under mechanical strain in a variety of irradiated materials at the University of Nevada, Reno. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21603: Establishment of Remote Control High Temperature Mechanical Testing Facility in a Hot Cell at The University of New Mexico | University of New Mexico | $250,000 | _This project will establish a high temperature mechanical testing capability within the hot cell of Nuclear Engineering Department at the University of New Mexico that can be operated using the existing manipulators, allowing remote operation for testing radioactive specimens. Combined with the existing infrastructure, this capability will allow establishment ofÊmicrostructure-mechanical property relations in structural materials for nuclear applications. The facility will also help educate and train the next generation of nuclear scientists, engineers, and policy makers. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21614: High Temperature Thermophysical Properties of Nuclear Fuels and Materials | University of Pittsburgh | $300,000 | _This project will allow the acquisition of key equipment to strengthen the core nuclear capability in the strategic thrust area of instrumentation and measurements at the University of Pittsburgh. This will be accomplished through the purchase of a laser flash analyzer and a thermal mechanical analyzer as a tool suite for complete thermophysical property information, and to fill an infrastructure gap to enhance nuclear research and education. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21624: Ex-situ and In-situ Molten Salt Chemical Analysis Capabilities for the Development of Materials in Molten Salt Environments | University of Wisconsin-Madison | $263,000 | _The project will allow for the addition of a state-of-the-art laser induced breakdown spectroscopy system, which will complement the University of Wisconsin-Madison Nuclear Engineering program's molten salt researchÊcapabilitiesÊwith an ex-situ and in-situ chemical analysis characterization tool that can detect all impurities in the salt, even low-Z elements. With these additions, higher throughput analysis of alloys and salts for molten salt reactor applications would be developed and would accelerate material discoveries. | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-21609: A Customized Creep Frame to Enable High-Throughput Characterization of Creep Mechanism Maps | Utah State University | $160,000 | _This project will allow for the acquisition and installation of a custom creep testing frame with an environmental chamber which has been modified with windows to support camera-based strain measurements. The measurements obtained using the equipment will be used to study heterogeneous creep strain accumulation in nuclear materials, with applications geared towards light water reactor sustainability, accident tolerant fuels, and other important materials-related challenges in nuclear science and engineering._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-19067: Laboratory-based High-Resolution X-ray Absorption and Emission Spectroscopy for Nuclear Science and Radiochemistry Research and Education | Washington State University | $287,450 | _This project will allow for the acquisition of a radiological laboratory-based high-resolution hard X-ray spectrometer that can perform both X-ray absorption spectroscopy and X-ray emission spectroscopy. This instrument will greatly upgrade the technical capability of the nuclear reactor facility at Washington State University (WSU) for nuclear-related and radiochemical research and teaching, allowing for enhancement of WSUÕs capacity to attract high quality students interested in nuclear science._ | General Scientific Infrastructure | FY2020 | |
NEUP Project 20-20215: A New Control Rod Drive Mechanism Design for the ISU AGN-201M Reactor | Idaho State University | $59,262 | _The existing control rod drive mechanism of the Idaho State University's Aerojet General Nucleonics model 201-Modified reactor will be replaced with a new, reliable, alternative design to reduce the overall complexity and probability of failure and improve the overall reliability and safety of the reactor. With proper material selection and improved structural design, the new drives are lighter, with little to no change in structural integrity, and eliminate the binding scenarios by using a single lead screw and implementing additional guide rods. The new design ensures the reactorÕs long-term viability for educational and research activities and increases the reliability and safety of operation. | Reactor Upgrades | FY2020 | |
NEUP Project 20-20186: University Research Reactor Upgrades Infrastructure Support for the MIT Research ReactorÕs Normal and Emergency Electrical Power Supply Systems | Massachusetts Institute of Technology | $537,818 | _The existing emergency electrical power battery system at the Massachusetts Institute of Technology Research Reactor will be updated with new technology and equipment, enhancing emergency preparedness of the reactor facility by restoring the post-shutdown emergency power supply for at least eight hours. In addition, the two existing reactor motor control centers that provide normal electrical power to the reactor's main cooling pumps, building isolation equipment, instrumentation, and other necessary operational and safety equipment, will be updated to improve equipment reliability and enhance personnel electrical safety by using components that meet modern standards. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21634: Furthering Oregon State University to Meet Nuclear Science and Engineering Research Challenges Through Reactor Upgrade Investment Ð Increasing Material Science Capability | Oregon State University | $118,020 | _The TRIGA¨ Mk II Oregon State TRIGA¨ ReactorÊprogram will purchaseÊa liquid scintillation counter in order to increase utilization of the facility. This upgrade will provide opportunity for continued safe use of the reactor in the areas of nuclear science and engineering research, as well as materials science at Oregon State University and development relevant to the DOE._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21589: Underground Waste Storage Tanks Removal and Installation of New Above Ground Waste Storage Tanks and Waste Evaporator Pit at the Radiation Science and Engineering Center | Pennsylvania State University | $306,744 | _In order for the necessary construction of a new beam ball at the Penn State Breazeale Reactor, the antiquated underground storage tanks will be replaced with above ground water storage tanks within the expanded neutron beam hall space. This effort will allow progress to continue toward the goal of massively expanding the number of neutron experiment stations available to the Radiation Science and Engineering Center users._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21633: PUR-1 Water Processing and Cooling System Upgrade | Purdue University | $36,000 | _The heat exchanger and associated water process system of the Purdue University Reactor Number One will be replaced, in order to ensure the reactor's safe and continuous operation. This replacement will allow the Purdue UniversityÊReactorÊNumber One to reject 10 kW of reactor heat with nominal excess capacity and achieve steady state operations at the fully licensed power level with enhanced capacity, reliability, and safety. With this replacement, the facility will be able to access fluence required for meaningful research applications. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21571: Reactor Safety Control Component Upgrade | Rhode Island Nuclear Science Center | $477,000 | _The Rhode Island Nuclear Science Center's last remaining original components in the reactor controls system will be upgraded and the remaining components will be integrated into a configuration that not only enhances the reactor operatorÕs ability to operate the reactor safely, but also improves reliability, maintenance capability and longevity. By replacing the last of the vacuum tube based technology from the original installation with the Reactor Safety Control Components, the long term viability of the research reactor to support ongoing and future research projects and educational endeavors will be improved. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21621: Equipment Upgrades at University of Massachusetts Lowell Research Reactor (UMLRR) to enable neutron-induced reaction research. | University of Massachusetts, Lowell | $129,788 | _Equipment and the experimental infrastructure at the University of Massachusetts-Lowell Research Reactor will be upgraded, in order to ensure the safe and efficient operation of the reactor during the next 20 or more years of operations. A new control console that will ensure the safe and efficient operation, as well as upgrades to the experimental infrastructure of the facility, during the next 20 or more years of operations. The proposed control system upgrades will continue to enhance this ongoing educational development pathway._ | Reactor Upgrades | FY2020 | |
NEUP Project 20-21601: University of Missouri Research Reactor Beryllium Reflector Replacement | University of Missouri, Columbia | $585,013 | _The University of Missouri-Columbia Research Reactor's beryllium reflector will be replaced, due to the irradiation induced swelling from the neutron fluence and thermal induced tensile stress from radiation heating of the beryllium material. Replacing the reactorÕs beryllium reflector is a high priority and critical upgrade necessary for the continued safe and reliable operations of the reactor to support nuclear science and engineering students and faculty, as well as the facilityÕs extensive infrastructure supporting the research needs of the nuclear industry. | Reactor Upgrades | FY2020 | |
NEUP Project 20-21593: Reactor Cooling System Upgrade for the University of Utah TRIGA Reactor | University of Utah | $487,387 | The cooling system of the Universty of Utah TRIGA reactor (UUTR) will be replaced to enhance performance and utility by allowing for the reactor to run for much longer periods at full power, increasing safety and operational reliability. Converting the cooling mechanism from a passive system to an active system will increase the cooling capacity by up to 1 MW thermal energy. This will allow for the UUTR to have much longer runtimes and higher daily neutron/gamma fluence, which will enhance the capability for a wide range of nuclear research and development efforts. | Reactor Upgrades | FY2020 |
*Actual project funding will be established during contract negotiation phase.
FAQ
Search commonly asked questions about NE funding opportunities.
Documents
Find documents and forms for applications and post-award reporting.
Open Funding Opportunities
Look for available NE funding opportunities announcements.
Funded Projects
Browse information on NEUP funded projects dating back to 2009.